-4x + 8y = 2
-4x + 4x + 8y = 2 + 4x
8y = 4x + 2
8 8
y = ¹/₂x + ¹/₄
Answer:
D
Step-by-step explanation:
This is probably the answer I’m not 100% sure
Let the side of the garden alone (without walkway) be x.
Then the area of the garden alone is x^2.
The walkway is made up as follows:
1) four rectangles of width 2 feet and length x, and
2) four squares, each of area 2^2 square feet.
The total walkway area is thus x^2 + 4(2^2) + 4(x*2).
We want to find the dimensions of the garden. To do this, we need to find the value of x.
Let's sum up the garden dimensions and the walkway dimensions:
x^2 + 4(2^2) + 4(x*2) = 196 sq ft
x^2 + 16 + 8x = 196 sq ft
x^2 + 8x - 180 = 0
(x-10(x+18) = 0
x=10 or x=-18. We must discard x=-18, since the side length can't be negative. We are left with x = 10 feet.
The garden dimensions are (10 feet)^2, or 100 square feet.
H = 4(x + 3y) + 2
H = 4x + 12y + 2
H - 12y - 2 = 4x
(H - 12y - 2) / 4 = x or 1/4H - 3y - 1/2 = x