1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sholpan [36]
3 years ago
13

What is the answer to ax + 7 = 8x + b when x=9

Mathematics
1 answer:
xxTIMURxx [149]3 years ago
6 0

Hey there!

ax + 7 = 8x + b

when x=9, so:

a(9) +7= 8(9) +b

9a +7= 72+b

I hope this helps?

You might be interested in
I need help with number 8
Mumz [18]

Answer:

If the underlined digit is 5 then it is Fifty thousand (50,000)

8 0
2 years ago
Read 2 more answers
The length of a rectangle is increasing at a rate of 4 meters per day and the width is increasing at a rate of 1 meter per day.
puteri [66]

Answer:

\displaystyle \frac{dA}{dt} = 102 \ m^2/day

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Geometry</u>

Area of a Rectangle: A = lw

  • l is length
  • w is width

<u>Calculus</u>

Derivatives

Derivative Notation

Implicit Differentiation

Differentiation with respect to time

Derivative Rule [Product Rule]:                                                                              \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle l = 10 \ meters<u />

<u />\displaystyle \frac{dl}{dt} = 4 \ m/day<u />

<u />\displaystyle w = 23 \ meters<u />

<u />\displaystyle \frac{dw}{dt} = 1 \ m/day<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Area of Rectangle] Product Rule:                                                                 \displaystyle \frac{dA}{dt} = l\frac{dw}{dt} + w\frac{dl}{dt}

<u>Step 3: Solve</u>

  1. [Rate] Substitute in variables [Derivative]:                                                    \displaystyle \frac{dA}{dt} = (10 \ m)(1 \ m/day) + (23 \ m)(4 \ m/day)
  2. [Rate] Multiply:                                                                                                \displaystyle \frac{dA}{dt} = 10 \ m^2/day + 92 \ m^2/day
  3. [Rate] Add:                                                                                                      \displaystyle \frac{dA}{dt} = 102 \ m^2/day

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

8 0
3 years ago
during the 2015 nascar races, the car completed 371.5 laps around the track. During the 2016 race,the racers completed 378.925 l
grin007 [14]

Answer:

7.425 laps.

Step-by-step explanation:

That would be 378.925 - 371.5

= 7.425 laps,

7 0
3 years ago
In the diagram, ∠ADE ≅ ∠ABC.<br><br> The ratios___ and ___ are equal.
DiKsa [7]

Answer:

\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}

Step-by-step explanation:

triangle ADE and triangle ABC are similar

therefore, the ratio of their corresponding sides are equal

4 0
3 years ago
One more time!
CaHeK987 [17]
Since q(x) is inside p(x), find the x-value that results in q(x) = 1/4

\frac{1}{4} = 5 - x^2\ \Rightarrow\ x^2 = 5 - \frac{1}{4}\ \Rightarrow\ x^2 = \frac{19}{4}\ \Rightarrow \\&#10;x = \frac{\sqrt{19} }{2}

so we conclude that
q(\frac{\sqrt{19} }{2} ) = 1/4

therefore

p(1/4) = p\left( q\left(\frac{ \sqrt{19} }{2} \right)  \right)

plug x=\sqrt{19}/2 into p( q(x) ) to get answer

p(1/4) = p\left( q\left( \frac{ \sqrt{19} }{2} \right) \right)\ \Rightarrow\ \dfrac{4 - \left(  \frac{\sqrt{19} }{2}\right)^2 }{ \left(  \frac{\sqrt{19} }{2}\right)^3 } \Rightarrow \\ \\ \dfrac{4 - \frac{19}{4} }{ \frac{19\sqrt{19} }{8}} \Rightarrow \dfrac{8\left(4 - \frac{19}{4}\right) }{ 8 \cdot \frac{19\sqrt{19} }{8}} \Rightarrow \dfrac{32 - 38}{19\sqrt{19}} \Rightarrow \dfrac{-6}{19\sqrt{19}} \cdot \frac{\sqrt{19}}{\sqrt{19}}\Rightarrow

\dfrac{-6\sqrt{19} }{19 \cdot 19} \\ \\ \Rightarrow  -\dfrac{6\sqrt{19} }{361}

p(1/4) = -\dfrac{6\sqrt{19} }{361}
3 0
3 years ago
Other questions:
  • HELPPPP! PLEASE EXPLAIN!!!
    5·1 answer
  • Simplify 5/7r-2/7r......
    9·1 answer
  • Is the simplified form of 2 3 squared ⋅ 12 squared rational?
    9·1 answer
  • In the problem 3r=9/10 how do you solve this to find out what r is
    12·1 answer
  • A box of cereal is shaped like a rectangular prism. The box is 20 centimeters long and 30 centimeters high. It's volume is 3600
    9·2 answers
  • Find the missing value of 2/5=?/15
    10·2 answers
  • Adele runs a business that buys vintage clothes at estate sales and resource them online what is the best description of Adele's
    13·1 answer
  • A= 1/2 π r ^2 solve for pi
    10·1 answer
  • A factory made 69 packs of mint-flavored gum and 31 packs of fruit-flavored gum. What percentage of the packs contained mint gum
    8·1 answer
  • What is the domain of the function in this table?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!