░░███████░░░░░░░░░░███▒▒▒▒▒▒▒▒███░░░░░░░
░░█▒▒▒▒▒▒█░░░░░░░███▒▒▒▒▒▒▒▒▒▒▒▒▒███░░░░
░░░█▒▒▒▒▒▒█░░░░██▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒██░░
░░░░█▒▒▒▒▒█░░░██▒▒▒▒▒██▒▒▒▒▒▒██▒▒▒▒▒███░
░░░░░█▒▒▒█░░░█▒▒▒▒▒▒████▒▒▒▒████▒▒▒▒▒▒██
░░░█████████████▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒██
░░░█▒▒▒▒▒▒▒▒▒▒▒▒█▒▒▒▒▒▒▒▒▒█▒▒▒▒▒▒▒▒▒▒▒██
░██▒▒▒▒▒▒▒▒▒▒▒▒▒█▒▒▒██▒▒▒▒▒▒▒▒▒▒██▒▒▒▒██
██▒▒▒███████████▒▒▒▒▒██▒▒▒▒▒▒▒▒██▒▒▒▒▒██
█▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒█▒▒▒▒▒▒████████▒▒▒▒▒▒▒██
██▒▒▒▒▒▒▒▒▒▒▒▒▒▒█▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒██░
░█▒▒▒███████████▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒██░░░
░██▒▒▒▒▒▒▒▒▒▒████▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒█░░░░░
░░████████████░░░█████████████████░░░░░░
Answer:
Step-by-step explanation:
dont have a creative way but i just remember rise over run or 
hope this helps <3
Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
Answer:
a) y=8
b) x= 9
Step-by-step explanation:
a)
y/16= 2/4
y= 16 * 1/2 (cross multiply)
y= 8
b) x/5 = 36/20
x= 5 * 36/20 (cross multiply)
x= 9
Answer:
8
Step-by-step explanation:
The basic form of the equation is y=mx+b. The b stands for the y-intercept. In this equation, 8 is b due to its position in the equation, and -8/7 is m. Since we know that 8 is b and that b is the y-intercept, we know that 8 is the y-intercept.
Hope this helps!