Answer:
The length of the diagonal of the trunk is 56.356011 inches
Step-by-step explanation:
According to the given data we have the following:
height of the trunk= 26 inches
length of the trunk= 50 inches
According to the Pythagorean theorem, to calculate the length of the diagonal of the trunk we would have to calculate the following formula:
length of the diagonal of the trunk=√(height of the trunk∧2+length of the trunk∧2)
Therefore, length of the diagonal of the trunk=√(26∧2+50∧2)
length of the diagonal of the trunk=√3176
length of the diagonal of the trunk=56.356011
The length of the diagonal of the trunk is 56.356011 inches
The answer is 3/9 or 1/3 in its simplest form
Answer:
Step-by-step explanation:
The opposite side (the one not connected to A) = 4
The hypotenuse is 5
The adjacent side needs to be found for the cosine and the tangent.
a^2 + b^2 = c^2
a = opposite side = 4
b = adjacent side = ?
c = hypotenuse = 5
4^2 + x^2 = 5^2
16 + x^2 = 25
x^2 = 25 - 16
x^2 = 9
x = sqrt(9)
x = 3
cos(A) = adjacent / hypotenuse = 3/5
Tan(A) = opposite / adjacent = 4/3
cos(A) + tan(A) = 3/5 + 4/3
cos(A) + tan(A) = 9/15 + 20/15 = 29/15
Answer:
add real numbers together and imaginary numbers together
A + B = 12 + 11i
Step-by-step explanation:
Answer:
5+x=y
Step-by-step explanation:
If she has already knit 5 cm you will always have to factor that in. If x is the number of nights adding the number of nights she does 1 cm of knitting will give you the length she has knit so far (y). I hope this helped! Good luck