Answer:
Calculate the total distance travelled by the object - its motion is represented by the velocity-time graph below.
Here, the distance travelled can be found by calculating the total area of the shaded sections below the line.
½ × base × height.
½ × 4 × 8 = 16 m 2
(10 – 4) × 8 = 48 m 2
Explanation:
Step by step solution :
standard deviation is given by :

where,
is standard deviation
is mean of given data
n is number of observations
From the above data, 
Now, if
, then 
If
, then 
if
, then 
If
, then 
If
, then 
so, 



No, Joe's value does not agree with the accepted value of 25.9 seconds. This shows a lots of errors.
Heat from burning fuel warms the walls of the firebox section of the furnace in
A. a hot-water heating system.
B. a hot-air heating system.
C. a compressor compartment.
D. an evaporation system.
<h2>Answer: electrostatic and gravitational force
</h2><h2 />
Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.
In this sense, the following forces are conservative:
-Gravitational
-Elastic
-Electrostatics
While the Friction Force and the Magnetic Force are not conservative.
According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.
<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>