Answer: 3
Step-by-step explanation: Because, 1/2=2/4=3/6=4/8=5/10=6/12 are all the same. You can test is out by simply factoring out the biggest factor on both sides. For example, 2/4 can be simplified to 1/2, because 2/4=(2/2)/(4/2) you can divide both sides by two. Hope this helps, <3!
9514 1404 393
Answer:
8000π mm^3/s ≈ 25,133 mm^3/s
Step-by-step explanation:
The rate of change of volume is found by differentiating the volume formula with respect to time.
V = 4/3πr^3
V' = 4πr^2·r'
For the given numbers, this is ...
V' = 4π(20 mm)^2·(5 mm/s) = 8000π mm^3/s ≈ 25,133 mm^3/s
_____
<em>Additional comment</em>
By comparing the derivative to the area formula for a sphere, you see that the rate of change of volume is the product of the area and the rate of change of radius. This sort of relationship will be seen for a number of different shapes.
Simplify each term<span>.</span>
Simplify <span>3log(x)</span><span> by moving </span>3<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+2log(y−1)−5log(x)</span><span>
</span>
Simplify <span>2log(y−1)</span><span> by moving </span>2<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+log((y−1<span>)^2</span>)−5log(x)</span><span>
</span>
Rewrite <span>(y−1<span>)^2</span></span><span> as </span><span><span>(y−1)(y−1)</span>.</span><span>
</span><span>log(<span>x^3</span>)+log((y−1)(y−1))−5log(x)</span><span>
</span>
Expand <span>(y−1)(y−1)</span><span> using the </span>FOIL<span> Method.
</span><span>log(<span>x^3</span>)+log(y(y)+y(−1)−1(y)−1(−1))−5log(x)</span><span>
</span>
Simplify each term<span>.
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>x^<span>−5</span></span>)</span><span>
</span>Remove the negative exponent<span> by rewriting </span><span>x^<span>−5</span></span><span> as </span><span><span>1/<span>x^5</span></span>.</span><span>
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>1/<span>x^5</span></span>)</span><span>
</span>
Combine<span> logs to get </span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))
</span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))+log(<span>1/<span>x^5</span></span>)
</span>Combine<span> logs to get </span><span>log(<span><span><span>x^3</span>(<span>y^2</span>−2y+1)/</span><span>x^5</span></span>)</span><span>
</span>log(x^3(y^2−2y+1)/x^5)
Cancel <span>x^3</span><span> in the </span>numerator<span> and </span>denominator<span>.
</span><span>log(<span><span><span>y^2</span>−2y+1/</span><span>x^2</span></span>)</span><span>
</span>Rewrite 1<span> as </span><span><span>1^2</span>.</span>
<span><span>y^2</span>−2y+<span>1^2/</span></span><span>x^2</span>
Factor<span> by </span>perfect square<span> rule.
</span><span>(y−1<span>)^2/</span></span><span>x^2</span>
Replace into larger expression<span>.
</span>
<span>log(<span><span>(y−1<span>)^2/</span></span><span>x^2</span></span>)</span>
Well not all lines are lines of symmerty, because if you draw a let's say a rectangle on a piece of paper and draw a diagonal line through it, well the two sides don't really lie perfectly on one another!!
45÷9=5 they can put 5 plants in each square feet.