<span>The better the RSM dissolves in the solvent, the higher the Rf (retention factor) will be, and the further the RSM will move.
If the RSM is a polar compound, increasing the polarity of the solvent will increase the Rf of the RSM. If the RSM isn't a polar compound, an increasingly polar solvent will decrease the Rf.</span>
Inorganic chemistry studies the chemical compounds in inorganic, or non-living things such as minerals and metals.
Answer: (a) K *[A][B]^2
(b) The answer is B
Explanation:
A)
Step1:A+B<--> C (fast)
Step2: B+C→D(slow)
Rate depends on slowest step.
so,
rate = k' [B][C] ...eqn 1
But C is intermediate.so use step 1
Since 1st step is an equilibrium,
Kc = [C] /[A][B]
so,
[C] = Kc [A][B] ...eqn 2
put eqn 2 in eqn 1
rate = k' *[B] * Kc [A][B]
= k'Kc*[A][B]^2
= K *[A][B]^2 {writing k'Kc = K}
Answer: K *[A][B]^2
B)
Answer is B
Since rate depends on slowest step.
if slowest step is:
X2Y2+Z2→X2Y2Z+Z
then only,
rate= k[X2Y2][Z2]
Answer: B
Answer:
Option (A) the solid X is ground to a fine powder.
Explanation:
X(s) + 2B(aq) → X+(aq) + B2(g)
In the reaction above, the rate of the reaction will be highest, when X being a solid is ground to fine powder.
Grounding X to fine powder simply means increasing the surface area of X.
An increase in surface area of reactants will definitely increase the rate of reaction because the particles of the solid will collide with the right orientation and hence speed up the reaction rate.