1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
9

¿Qué pasa cuando nos enfrentamos con dos incógnitas, en el caso de que las ecuaciones que se generen sean de primer grado y form

en un sistema de ecuaciones?
Mathematics
1 answer:
kolbaska11 [484]3 years ago
7 0
<h2>Explicación:</h2><h2 />

Una ecuación de primer grado es una ecuación lineal en la que se ven involucradas una o más variables, sin existir productos entre ellas. Por ejemplo, una ecuación de primer grado con dos incógnitas es:

y=mx+b \\ \\m:pendiente \\ \\ b:y-intercept

De manera que un sistema de ecuaciones con dos incógnitas podría ser:

y=m_{1}x+b_{1} \\ \\ y=m_{2}x+b_{2}

que representan ecuaciones de rectas.

Existen tres posibilidades:

1. Una solución:

Ocurre cuando las rectas no son paralelas, es decir:

m_{1}\neq m_{2}

Entonces la solución es la intersección de estas dos rectas.

2. Infinitas soluciones:

Ocurre cuando las ecuaciones son las mismas, en cuyo caso las rectas son las mismas y se intersectan en todos los puntos, es decir:

m_{1}=m_{2} \\ \\ b_{1}=b_{2}

3. Ninguna solución:

Ocurre cuando las rectas son paralelas pero tienen distinta intersección con el eje y, es decir:

m_{1}=m_{2} \\ \\ b_{1}\neq b_{2}

You might be interested in
The question is <br> in the link below
Tom [10]

Answer:

D: -3

Step-by-step explanation:

In order to find a slope of a line from two pairs, one way you can do that is by using a formula.

The formula is as follows:

Y² - Y¹

⁻⁻⁻⁻⁻⁻⁻⁻⁻

X² - X¹

Using this formula, let's plug in our values.

1. Our first Y, is -4. Place that into the equation above for Y².

2. Our second Y, is 8. Place that into Y¹. Wait! Since it's negative in the equation, your positive eight must turn into a -8.

3. Our first X, is 3. Just like our first Y, plug it into your X².

4. Our second X, is -1. Since it is already negative, and the equation is has a negative in it, the negative plus a negative makes the number positive.

Your equation should look like this: (now solve)

-4 - 8           -12

----------- =  ------

3 + 1            4

Great, you've made it this far, there's ONE more step! Simplify the problem!

4 goes into 12, 3 times! This is because 4x3 is 12! Since your 12 is negative, your answer MUST stay negative, leaving your answer as -3.

If this leaves you confused, feel free to ask me more questions! :)

5 0
4 years ago
What's the Discriminant of X^2-2X-15 ?
Nesterboy [21]
The discriminant is the  secion inside the double parenthasees [()] below in the quadratic formulat which is
x=\frac{-b+ \sqrt{[(b^{2}-4ac)]} }{2a}

the determinant determines or tells whether the answer is real or imaginary
if it is negative, then it is imaginary, if positive, then it is real
 so basically the discriminmant is b^{2}-4ac

so ax^2+bx+c
a=x^2-2x-15

a=1
b=-2
c=-15

subsitute
-2^{2}-4(1)(-15)=4-4(1)(-15)=4+60=64
the discriminant is (-2^{2}-4(1)(-15)) or 64
3 0
3 years ago
I need help finding the volume of a prism
VARVARA [1.3K]
What type of prism? triangular? Rectangular?
6 0
3 years ago
Please look at the image for the question
olasank [31]

Answer:

Option 1: y + 5 = ½(x - 2)

Step-by-step explanation:

First, you need to find the slope. the formula to find the slope from two points is \frac{y_{2} - y_{1}}{x_{2} - x_{1}} and if you plug in the points it will be \frac{-4 - (-5)}{4 - 2} which is \frac{1}{2}.

point-slope form is y - y_{1} = m(x - x_{1}). m is slope and x₁ and y₁ is (2, -5).

plugging in the numbers will be y + 5 = ½(x - 2)

8 0
3 years ago
What is x and y if you have 4x-2y=5 and y=2x+10
jonny [76]

\bf \begin{cases} 4x-2y=5\\ \boxed{y}=2x+10 \end{cases}~\hspace{7em}\stackrel{\textit{substituting \boxed{y} in the 1st equation}}{4x-2\left( \boxed{2x+10} \right)=5} \\\\\\ 4x-4x-20=5\implies -20\ne 5


which makes no sense, our variable went poof, but that is a flag that this system has no solution, let's quickly solve both for "y" to put them in slope-intercept form,


\bf 4x-2y=5\implies 4x-5=2y\implies \cfrac{4x-5}{2}=y\implies ~\hfill \stackrel{\stackrel{m}{\downarrow }}{2}x-\cfrac{5}{2}=y \\\\\\ ~\hfill y=\stackrel{\stackrel{m}{\downarrow }}{2}x+10


so, notice, the slopes(m) are exactly the same for both, whilst the y-intercept differs, meaning both lines are parallel and therefore never touch each other, thus, no solution.

the untrue equation of -20 = 5, is another way to say, "no solution".

4 0
3 years ago
Other questions:
  • The sum of two numbers is 49 and the difference is 25 . What are the numbers?
    8·1 answer
  • You put $10,000 in a simple interest account at a bank. You will earn $1,800 in just 4 years. What is the annual interest rate f
    10·2 answers
  • What is an equivalent expression for 3 3-5?<br> ?
    11·1 answer
  • What is the difference between 76.82 and 2.761?<br> 49.210<br> 74.679<br> 74.059<br> 79.581
    8·1 answer
  • Is 69 prime or composite
    12·1 answer
  • What is the area of the trapezoid?asap
    6·2 answers
  • I need help on this..​
    9·1 answer
  • Multiply polynomials (x+4)(x+5)
    8·1 answer
  • What is 1000*90000 how will you solve it
    6·1 answer
  • What is the value of x
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!