Although the number of new wildflowers is decreasing, the total number of flowers is increasing every year (assuming flowers aren't dying or otherwise being removed). Every year, 25% of the number of new flowers from the previous year are added.
The sigma notation would be:
∑ (from n=1 to ∞) 4800 * (1/4)ⁿ , where n is the year.
Remember that this notation should give us the sum of all new flowers from year 1 to infinite, and the values of new flowers for each year should match those given in the table for years 1, 2, and 3
This means the total number of flowers equals:
Year 1: 4800 * 1/4 = 1200 ]
+
Year 2: 4800 * (1/4)² = 300
+
Year 3: 4800 * (1/4)³ = 75
+
Year 4: 4800 * (1/4)⁴ = 18.75 = ~19 (we can't have a part of a flower)
+
Year 5: 4800 * (1/4)⁵ = 4.68 = ~ 5
+
Year 6: 4800 * (1/4)⁶ = 1.17 = ~1
And so on. As you can see, it in the years that follow the number of flowers added approaches zero. Thus, we can approximate the infinite sum of new flowers using just Years 1-6:
1200 + 300 + 75 + 19 + 5 + 1 = 1,600
"<span>z˄2 − 3" because x squared is z^2, and 3 less of it would mean to subtract it from 3</span>
Its Letter A see photo for solution
Perimeter = the addition of all of the side lengths of the polygon.
The side lengths are 9cm, 6cm, 10cm, 5cm, 4cm, and 4cm.
So the perimeter is the following...
Perimeter = 9 + 6 + 10 + 5 + 4 + 4 = 38cm total