According to Dalton's Law of Partial pressures, the sum of the partial pressures of the individuals gas molecules that occupy a specific volume allows us to find the total pressure or find one of the partial pressures if the total pressure is known.
Partial pressure O2 = 632 - 124.3 - 461.9 = 45.8 mm Hg.
Answer:
See explanation
Explanation:
The ionic radius of metal M decreases as the charge on the metal M increases. The ionic radius is generally defined as the distance between the nucleus and the outermost electron of the ion. Hence, ionic radius becomes much lesser as the magnitude of the positive charge increases.
It is obvious from the various formulae of metal chlorides in the question that the metal forms cations M^2+, M^3+ and M^4+ respectively. The order of decreasing ionic radius of the compounds is;
MX2 > MX3 > MX4
When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
Answer: B
. particle size
Explanation:
Let's begin by explaining that a molecular sieve is a device, whose composition allows the absorbtion of molecules that are small enough to pass through its pores, since it is made up of small pores of a precise and uniform size.
Thus, very small molecules manage to pass through the pores of the sieve, while large ones do not.
So, based on this premise, a molecular sieve separates the substances by their size.
Hence, the correct option is B.