That law is known as Boyle's Law, "The volume of a given mass of a gas is inversely related to pressure when the temperature is constant"
Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2
Answer : Broadly solids are divided into three categories;
i) Crystalline solids have a regular definite structure, in which the particles pack in a repeating pattern from one edge of the solid to the other.
ii) Amorphous solids have a random structure, with little unorganized pattern long-range order.
iii) Polycrystalline solids are those where an aggregate which consists of a large number of small crystals or grains in which the structure is regular, but the crystals or grains are found to be arranged in a random fashion.
Also solids can be divided into 3 more categories according to their bonds;
i) Covalent solids, like diamond, which forms crystals that can be viewed as a single giant molecule made up of an almost endless number of covalent bonds.
ii) Ionic solids are basically salts, such as NaCl, in which the molecules are held together by the strong force of attraction between ions of opposite charge.
iii) Metallic solids are found in metals which have the force of attraction between atoms of metals, such as copper and aluminum, or alloys, such as brass and bronze, are metallic bonds.
The ridge of mid ocean b is the answer hope this helps