<h3>
Answer:</h3>
15 moles
<h3>
Explanation:</h3>
The decomposition of boron carbonate is given by the equation;
B₂(CO₃)₃(s) → B₂O₃(s) + 3CO₂(g)
Moles of boron carbonate decomposed is 5.0 mol
To find the moles of CO₂ produced we are going to use the mole ratio.
Mole ratio of B₂(CO₃)₃ to CO₂ is 1 : 3
Therefore;
Moles of CO₂ = Moles of B₂(CO₃)₃ × 3
= 15 mol
Therefore, 15 moles of CO₂ will be produced
<u />C. Water is an inexhaustible energy resource among these options. Coal, oil, and natural gas we can run of, but for the foreseeable future, there will always be water.
Number 1: (A.)
Number 2: (A.)
Number 3: (B.)
I'm probably wrong but that is what i think
<em><u>Question</u></em>
<em><u>What </u></em><em><u>does </u></em><em><u>it </u></em><em><u>mean </u></em><em><u>to </u></em><em><u>optimize</u></em><em><u> </u></em><em><u>a </u></em><em><u>solution?</u></em>
<em><u>To find out best possible solution for a given problem within the given constraint is generally termed as optimization</u></em>
<em><u>How </u></em><em><u>are </u></em><em><u>solution</u></em><em><u> </u></em><em><u>optimize</u></em><em><u> </u></em><em><u>?</u></em>
<em><u>To solve an optimization problem, begin by drawing a picture and introducing variables. Find an equation relating the variables. Find a function of one variable to describe the quantity that is to be minimized or maximized. Look for critical points to locate local extrema.</u></em>