Answer:
JP = 36
Step-by-step explanation:
The number 15 has 2 place values.
The value in the tens place is 1.
The value in the ones place is 5.
1 tens + 5 ones = 15
If you need help comment below and ill try my best to help you out!
Given the table showing the distance Randy drove on one day of her vacation as follows:
![\begin{tabular} {|c|c|c|c|c|c|} Time (h)&1&2&3&4&5\\[1ex] Distance (mi)&55&110&165&220&275 \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7C%7D%0ATime%20%28h%29%261%262%263%264%265%5C%5C%5B1ex%5D%0ADistance%20%28mi%29%2655%26110%26165%26220%26275%0A%5Cend%7Btabular%7D)
The rate at which she travels is given by

If Randy has driven for one more hour at the same rate, the number of hours she must have droven is 6 hrs and the total distance is given by
distance = 55 x 6 = 330 miles.
Answer:
0.0082 = 0.82% probability that he will pass
Step-by-step explanation:
For each question, there are only two possible outcomes. Either the students guesses the correct answer, or he guesses the wrong answer. The probability of guessing the correct answer for a question is independent of other questions. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:
.
If the student makes knowledgeable guesses, what is the probability that he will pass?
He needs to guess at least 9 answers correctly. So









0.0082 = 0.82% probability that he will pass
Answer:
Below, you can see the graph of the function:
f(x) = x + cos(k*x)
for different values of k, as follows:
red: k = 1
green: k = 2
orange: k = 0.
Now let's find the values of k such that our function does not have local maxima nor local minima.
First, remember that for a given function f(x), the local maxima or minima points are related to the zeros of the first derivate of f(x).
This means that if:
f'(x0) = 0.
Then x0 is a maxima, minima or an inflection point.
Then if a function is such that the f'(x) ≠ 0 , ∀x, then this function will not have local maxima nor minima.
Now we have:
f(x) = x + cos(k*x)
then:
f'(x) = 1 - k*sin(k*x)
This function will be zero when:
1 = k*sin(k*x)
1/k = sin(k*x)
now, remember that -1 ≤ sin(θ) ≤ 1
then if 1/k is smaller than -1, or larger than 1, we will not have zeros.
And this will happen if -1 < k < 1.