Answer:
The minimum sample size required is
.
Step-by-step explanation:
The (1 - <em>α</em>) % confidence interval for population mean is:

The margin of error for this interval is:

The information provided is:
E = 0.101
Confidence level = 95%
α = 5%
Compute the critical value of <em>z</em> for α = 5% as follows:

*Use a <em>z</em>-table.
Compute the sample size required as follows:
![n=[\frac{z_{\alpha/2}\times \sigma}{E}]^{2}](https://tex.z-dn.net/?f=n%3D%5B%5Cfrac%7Bz_%7B%5Calpha%2F2%7D%5Ctimes%20%5Csigma%7D%7BE%7D%5D%5E%7B2%7D)
![=[\frac{1.96\times \sigma}{0.101}]^{2}\\\\=376.59\times \sigma^{2}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B1.96%5Ctimes%20%5Csigma%7D%7B0.101%7D%5D%5E%7B2%7D%5C%5C%5C%5C%3D376.59%5Ctimes%20%5Csigma%5E%7B2%7D)
Thus, the minimum sample size required is
.