Answer:
There is no expression to evaluate.
Step-by-step explanation:
We want to get x by itself
First we will multiply both sides by 6 to cancel out the 6 on the left
5x = 120
We then divide by 5 on both sides to get x by itself
x = 24
Answer:
![\huge\boxed{\sqrt[3]{c^4}=c^\frac{4}{3}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D%7D)
Step-by-step explanation:
![\sqrt[n]{a^m}=a^\frac{m}{n}\\\\\text{therefore}\\\\\sqrt[3]{c^4}=c^\frac{4}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%5Cfrac%7Bm%7D%7Bn%7D%5C%5C%5C%5C%5Ctext%7Btherefore%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D)
Hello!
∠E and the angle measuring 119 degrees (we'll refer to this as ∠A) can be classified as supplementary angles. Supplementary angles are two angles whose measures add to a sum of 180 degrees (a straight line). Therefore, we can conclude that sum of ∠E and ∠A is 180 degrees. We can use this information to create the following equation:
∠E + 119 = 180
Now subtract 119 from both sides of the equation:
∠E = 61
We have now proven that ∠E is equal to 61 degrees.
I hope this helps!