Answer:
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Let 'S' be the sample space associated with the drawing of a card
n (S) = 52C₁ = 52
Let E₁ be the event of the card drawn being a king

Let E₂ be the event of the card drawn being a queen

But E₁ and E₂ are mutually exclusive events
since E₁ U E₂ is the event of drawing a king or a queen
<u><em>step(ii):-</em></u>
The probability of drawing of a king or a queen from a standard deck of playing cards
P( E₁ U E₂ ) = P(E₁) +P(E₂)

P( E₁ U E₂ ) = 
<u><em>step(iii):-</em></u>
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards



<u><em>Conclusion</em></u>:-
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846
Answer:
the base is 7 units and the height is 3 units
Answer:
2375^-3
Step-by-step explanation:
Move the decimal place from 2.375 to the back of the number so it should look like this, 2375.
Than move the decimal place back to its original spot and count the amount of spaces you move. Remember, if you move forward, your exponent should be negative. For example, if the problem is 6.321, you would move the decimal place to the back like this, 6321. And then move it back to where it originally was, 6.321, the amount of spaces I moved was 3 spaces and I moved forward so It would be 6.321^-3
Answer:
huh
Step-by-step explanation:
Answer:
Divide both sides by 9.
Step-by-step explanation:
To find the second step of the equation, we actually have to solve parts of the equation until we get to step 2.
Step 1: Add 23 to both sides.
Step 2: Divide both sides by 9.
Therefore, the second step is divide both sides by 9.
Have a lovely rest of your day/night, and good luck with your assignments! ♡