If you're using the app, try seeing this answer through your browser: brainly.com/question/2968008—————————
Solve the logarithmic equation
log₃(x – 4) + log₃(x – 2) – log₃ x = 1 Condition:
x > 4, because logarithms are only defined for positive numbers.
log₃(x – 4) + log₃(x – 2) – log₃ x = 1 log₃(x – 4) + log₃(x – 2) – log₃ x = log₃ 3Applying log properties, you can rewrite that equation as
![\mathsf{log_3\!\left[\dfrac{(x-4)(x-2)}{x} \right ]=log_3\,3}](https://tex.z-dn.net/?f=%5Cmathsf%7Blog_3%5C%21%5Cleft%5B%5Cdfrac%7B%28x-4%29%28x-2%29%7D%7Bx%7D%20%5Cright%20%5D%3Dlog_3%5C%2C3%7D)
Since log is an one-to-one function, you can "cancel out" those logs at both sides, so you have
![\mathsf{\dfrac{(x-4)(x-2)}{x}=3}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B%28x-4%29%28x-2%29%7D%7Bx%7D%3D3%7D)
Multiply both sides by
x to simplify that denominator:
![\mathsf{\diagup\!\!\!\! x\cdot \dfrac{(x-4)(x-2)}{\diagup\!\!\!\! x}=x\cdot 3}\\\\\\ \mathsf{(x-4)(x-2)=3x}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%20x%5Ccdot%20%5Cdfrac%7B%28x-4%29%28x-2%29%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%20x%7D%3Dx%5Ccdot%203%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%28x-4%29%28x-2%29%3D3x%7D)
Multiply out those brackets, by applying the distributive property:
![\mathsf{(x-4)\cdot x-(x-4)\cdot 2=3x}\\\\ \mathsf{x^2-4x-2x+8=3x}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28x-4%29%5Ccdot%20x-%28x-4%29%5Ccdot%202%3D3x%7D%5C%5C%5C%5C%20%5Cmathsf%7Bx%5E2-4x-2x%2B8%3D3x%7D)
Subtract
3x from both sides, and then combine like terms together:
![\mathsf{x^2-4x-2x+8-3x=3x-3x}\\\\ \mathsf{x^2-4x-2x-3x+8=0}\\\\ \mathsf{x^2-9x+8=0}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%5E2-4x-2x%2B8-3x%3D3x-3x%7D%5C%5C%5C%5C%20%5Cmathsf%7Bx%5E2-4x-2x-3x%2B8%3D0%7D%5C%5C%5C%5C%20%5Cmathsf%7Bx%5E2-9x%2B8%3D0%7D)
Now you have a quadratic equation, where the coefficients are
a = 1, b = – 9, c = 8Solve it using the quadratic formula:
Finding the discriminant
Δ:
Δ = b² – 4acΔ = (– 9)² – 4 · 1 · 8Δ = 81 – 32Δ = 49Δ = 7²Then,
![\mathsf{x=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{x=\dfrac{-(-9)\pm\sqrt{7^2}}{2\cdot 1}}\\\\\\ \mathsf{x=\dfrac{9\pm 7}{2}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7Bx%3D%5Cdfrac%7B-%28-9%29%5Cpm%5Csqrt%7B7%5E2%7D%7D%7B2%5Ccdot%201%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7Bx%3D%5Cdfrac%7B9%5Cpm%207%7D%7B2%7D%7D)
![\begin{array}{rcl} \mathsf{x=\dfrac{9-7}{2}}&~\textsf{ or }~&\mathsf{x=\dfrac{9+7}{2}}\\\\ \mathsf{x=\dfrac{2}{2}}&~\textsf{ or }~&\mathsf{x=\dfrac{16}{2}}\\\\ \mathsf{x=1}&~\textsf{ or }~&\mathsf{x=8} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%20%5Cmathsf%7Bx%3D%5Cdfrac%7B9-7%7D%7B2%7D%7D%26~%5Ctextsf%7B%20or%20%7D~%26%5Cmathsf%7Bx%3D%5Cdfrac%7B9%2B7%7D%7B2%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bx%3D%5Cdfrac%7B2%7D%7B2%7D%7D%26~%5Ctextsf%7B%20or%20%7D~%26%5Cmathsf%7Bx%3D%5Cdfrac%7B16%7D%7B2%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bx%3D1%7D%26~%5Ctextsf%7B%20or%20%7D~%26%5Cmathsf%7Bx%3D8%7D%20%5Cend%7Barray%7D)
You can discard
x = 1 as a solution, because those initial logarithms are not defined for this value of x (remember that
x must be
greater than 4).
So the only solution is
x = 8.
Solution set:
S = {8}.
I hope this helps. =)
Tags: <em>logarithmic logarithm log equation condition quadratic formula discriminant solve algebra</em>