Given that the population can be modeled by P=22000+125t, to get the number of years after which the population will be 26000, we proceed as follows:
P=26000
substituting this in the model we get:
26000=22000+125t
solving for t we get:
t=4000/125
t=32
therefore t=32 years
This means it will take 32 years for the population to be 32 years. Thus the year in the year 2032
Answer:
?????.... hii erica herrrr
Answer:
95 nickels 19 dimes
Step-by-step explanation:
d=dimes
5d=nickels
0.05(5d) + 0.10(d) = 6.65
0.25d + 0.10d = 6.65
0.35d=6.65
Divide by 0.35
d= 19 (19 coins)
19 dimes =$1.9
6.65-1.9= $4.75
Nickels=$4.75
4.75/0.05 = 95 coins
19*5=95
114 coins in total
19*0.10 = 1.9
95*0.05=4.74
4.75+1.9= 6.65
Answer:
The answer is the last one:
4 , 10 , 18 , (k + 1)² + 3(k + 1) and k² + 5k + 4
Step-by-step explanation:
∵ 2 is a factor of n² + 3n
∵ n = 1 ⇒ ∴ (1)² + 3(1) = 1 + 3 = 4 ⇒ 2 is a factor of 4
∵ n = 2 ⇒ ∴ (2)² + 3(2) = 4 + 6 = 10 ⇒ 2 is a factor of 10
∵ n = 3 ⇒ ∴ (3)² + 3(3) = 9 + 9 = 18 ⇒ 2 is a factor of 18
∵ n = k + 1 ⇒ ∴ (k + 1)² + 3(k + 1) ⇒ before the simplify
∵ n = k + 1 ⇒ ∴ k² + 2k + 1 + 3k + 3 = k² + 5k + 4 ⇒ after simplify