The answer is decompression melting
Answer: 4.9 x 10-3 N
Explanation:
A = 500cm^2 = 5 x 10^-2 m^2
V = 5 m/s
R = 10^-3 g/cm^2.sec = 10^-2kg/m^2 . sec
Prain water = R / V = 10^-2 / 5 = 2 x 10-3 kg/m^3
For the stationary bowl,
dm/dt =pAv= RA
F= dp/dt = (dm/dt) v = RAv = 2.5 x 10^-3 N
Bowl moving upwards to speed u = 2 m/s
dm/dt = pA ( v + u) / v
F = dp/dt = (dm/dt)(v+u) = RA (v+u)^2 / v = 4.9 x 10^-3 N
A paper pinwheel is spinning in the wind.
Which statement is correct about the forces responsible for the rotation?
The components of gravity and the force of wind that point through the pivot are responsible for the rotation.
Only the perpendicular component of wind is responsible for the rotation, because gravity points downward.
Only the perpendicular component of gravity is responsible for the rotation, because wind points toward the pivot.
The perpendicular components of gravity and the force of wind are responsible for the rotation.
Answer:
Only the perpendicular component of gravity is responsible for the rotation because wind points toward the pivot.
Explanation:
A pinwheel is a plaything that is made up of paper that is designed to spin when the wind comes in contact with it. The paper is held fast to its axle by a pin which enables it to spin.
Therefore, if the pinwheel is spun anti-clockwise, it brings electrical energy, converting the wind energy and <u>only the perpendicular component of gravity is responsible for the rotation because wind points toward the pivot. </u>
Answer:
a) Height of the antenna (in m) for a radio station broadcasting at 604 kHz = 124.17 m
b)Height of the antenna (in m) for radio stations broadcasting at 1,710 kHz =43.86 m
Explanation:
(a) Radiowave wavelength= λ = c/f
As we know, Radiowave speed in the air = c = 3 x 10^8 m/s
f = frequency = 604 kHz = 604 x 10^3 Hz
Hence, wavelength = (3x10^8/604x10^3) m
λ
= 496.69 m
So the height of the antenna BROADCASTING AT 604 kHz = λ /4 = (496.69/4) m
= 124.17 m
(b) As we know , f = 1710 kHz = 1710 x 10^3 Hz (1kHZ = 1000 Hz)
Hence, wavelength = λ = (3 x 10^8/1710 x 10^3) m
λ= 175.44 m
So, height of the antenna = λ /4 = (175.44/4) m
= 43.86 m