1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
9

Holding onto a tow rope moving parallel to a frictionless ski slope, a 68.7 kg skier is pulled up the slope, which is at an angl

e of 6.7° with the horizontal. What is the magnitude Frope of the force on the skier from the rope when (a) the magnitude v of the skier's velocity is constant at 1.90 m/s and (b) v = 1.90 m/s as v increases at a rate of 0.150 m/s2?
Physics
1 answer:
Furkat [3]3 years ago
3 0

Answer:

a) F = 78.606\,N, b) F = 88.911\,N

Explanation:

a) Let consider two equations of equilibrium, the first parallel to ski slope and the second perpendicular to that. The equations are, respectively:

\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = 0\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0

The force on the skier is:

F = m \cdot g \cdot \sin \theta

F = (68.7\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot \sin 6.7^{\textdegree}

F = 78.606\,N

b) The equations of equilibrium are the following:

\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = m\cdot a\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0

The force on the skier is:

F = m\cdot (a + g \cdot \sin \theta)

F = (68.7\,kg)\cdot (0.150\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}\cdot \sin 6.7^{\textdegree})

F = 88.911\,N

You might be interested in
A poker is a long thin tool used to move pieces of coal or logs burning in a fire. To be as safe as possible, the poker should b
nata0808 [166]

Answer:

See the answer below

Explanation:

A poker that will effectively and safely function to move pieces of coal or logs in a burning fire must be fireproof itself. Hence, to be as safe as possible, such <u>poker should be made from a material that is fireproof</u> and that does not conduct a lot of heat. Otherwise, the poker will catch fire/becomes too hot during the course of usage.

3 0
2 years ago
1.How can you conserve water in the kitchen?
PIT_PIT [208]
Instead of washing vegetables in running water, fill a bowl of water and wash inside the bowl.
4 0
3 years ago
Plain electromagnetic wave (in air) has a frequency of 1 MHz and its B-field amplitude is 9 nT a. What is the wavelength in air?
Norma-Jean [14]

Answer:

Part a)

\lambda = 300 m

Part b)

E = 2.7 N/C

Part c)

I = 9.68 \times 10^{-3} W/m^2

P = 3.22 \times 10^{-11} N/m^2

Explanation:

Part a)

As we know that frequency = 1 MHz

speed of electromagnetic wave is same as speed of light

So the wavelength is given as

\lambda = \frac{c}{f}

\lambda = \frac{3\times 10^8}{1\times 10^6}

\lambda = 300 m

Part b)

As we know the relation between electric field and magnetic field

E = Bc

E = (9 \times 10^{-9})(3\times 10^8)

E = 2.7 N/C

Part c)

Intensity of wave is given as

I = \frac{1}{2}\epsilon_0E^2c

I = \frac{1}{2}(8.85 \times 10^{-12})(2.7)^2(3\times 10^8)

I = 9.68 \times 10^{-3} W/m^2

Pressure is defined as ratio of intensity and speed

P = \frac{I}{c} = \frac{9.68\times 10^{-3}}{3\times 10^8}

P = 3.22 \times 10^{-11} N/m^2

6 0
3 years ago
The masses are m1 = m, with initial velocity 2v0, and m2 = 7.4m, with initial velocity v0. Due to the collision, they stick toge
lesya [120]

Answer:

Loss, \Delta E=-10.63\ J

Explanation:

Given that,

Mass of particle 1, m_1=m =0.66\ kg

Mass of particle 2, m_2=7.4m =4.884\ kg

Speed of particle 1, v_1=2v_o=2\times 6=12\ m/s

Speed of particle 2, v_2=v_o=6\ m/s

To find,

The magnitude of the loss in kinetic energy after the collision.

Solve,

Two particles stick together in case of inelastic collision. Due to this, some of the kinetic energy gets lost.

Applying the conservation of momentum to find the speed of two particles after the collision.

m_1v_1+m_2v_2=(m_1+m_2)V

V=\dfrac{m_1v_1+m_2v_2}{(m_1+m_2)}

V=\dfrac{0.66\times 12+4.884\times 6}{(0.66+4.884)}

V = 6.71 m/s

Initial kinetic energy before the collision,

K_i=\dfrac{1}{2}(m_1v_1^2+m_2v_2^2)

K_i=\dfrac{1}{2}(0.66\times 12^2+4.884\times 6^2)

K_i=135.43\ J

Final kinetic energy after the collision,

K_f=\dfrac{1}{2}(m_1+m_2)V^2

K_f=\dfrac{1}{2}(0.66+4.884)\times 6.71^2

K_f=124.80\ J

Lost in kinetic energy,

\Delta K=K_f-K_i

\Delta K=124.80-135.43

\Delta E=-10.63\ J

Therefore, the magnitude of the loss in kinetic energy after the collision is 10.63 Joules.

7 0
3 years ago
Power windmills turn in response to the force of high-speed drag. For a sphere moving through a fluid, the resistive force, FR i
Crazy boy [7]

Answer:

The answer is 20727w

Explanation:

The formula is below;

P = d r^2 v^3 *efficiency

In the question, it is stated that the registration ignores efficiency so we are going to ignore efficiency in the equation and use it this way;

P = d r^2 * v^3

d =4.3, r = 1.59, v =n 12.4

Therefore, P = 4.3 X 1.59^2  X 12.4^3 = 20727W

3 0
3 years ago
Other questions:
  • Consider the wave function y(x)-Find the probability of fi in the range -a
    10·1 answer
  • Density is calculated by dividing the mass of an object by its volume. 
    10·2 answers
  • 90 percent round to the thousandths place
    14·2 answers
  • Mutations provide a basis for...
    10·1 answer
  • What does a ‘0’ mean in binary code?
    9·1 answer
  • Please help!!! This Is for science
    11·1 answer
  • A stone whirled on a string experiences a centripetal acceleration of 10 m/s². If the string were shortened to half its length (
    7·1 answer
  • The wheelchair starts from rest. It accelerates at a constant rate until it has a speed of 1.5 m/s. The wheelchair travels a dis
    10·1 answer
  • What would happen if you didn't have chemical energy in your body? Choose the best answer.
    6·1 answer
  • How long does it take an object to travel 375 m at a rate of 25 m/s?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!