Answer:
move the decimal 6 places to the left.
Explanation:
um I assume you meant to say area m^3
<span>The two foremost forces that were involved in the creation of the Cascade mountains are those of the tidal and tectonic forces. Tidal forces helped in eroding anything that was there previously, and the tectonic forces caused the eruption of these mountains to take place.</span>
Answer:
The faster an object moves, the more kinetic energy it has. The more mass an object has, the more kinetic energy it has.
Explanation:
Answer:
![B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
Explanation:
To find the magnitude of the magnetic field, you use the following formula for the calculation of the magnetic field generated by a current in a wire:

μo: magnetic permeability of vacuum = 4π*10^-7 T/A
I: current = 6.0 A
r: distance to the wire in which magnetic field is measured
In this case, you have four wires at corners of a square of length 9.0cm = 0.09m
You calculate the magnetic field in one corner. Then, you have to sum the contribution of all magnetic field generated by the other three wires, in the other corners. Furthermore, you have to take into account the direction of such magnetic fields. The direction of the magnetic field is given by the right-hand side rule.
If you assume that the magnetic field is measured in the up-right corner of the square, the wire to the left generates a magnetic field (in the corner in which you measure B) with direction upward (+ j), the wire down (down-right) generates a magnetic field with direction to the left (- i) and the third wire generates a magnetic field with a direction that is 45° over the horizontal in the left direction (you can notice that in the image attached below). The total magnetic field will be:
![B_T=B_1+B_2+B_3\\\\B_{T}=\frac{\mu_o I_1}{2\pi r_1}\hat{j}-\frac{\mu_o I_2}{2\pi r_2}\hat{i}+\frac{\mu_o I_3}{2\pi r_3}[-cos45\hat{i}+sin45\hat{j}]](https://tex.z-dn.net/?f=B_T%3DB_1%2BB_2%2BB_3%5C%5C%5C%5CB_%7BT%7D%3D%5Cfrac%7B%5Cmu_o%20I_1%7D%7B2%5Cpi%20r_1%7D%5Chat%7Bj%7D-%5Cfrac%7B%5Cmu_o%20I_2%7D%7B2%5Cpi%20r_2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Cmu_o%20I_3%7D%7B2%5Cpi%20r_3%7D%5B-cos45%5Chat%7Bi%7D%2Bsin45%5Chat%7Bj%7D%5D)
I1 = I2 = I3 = 6.0A
r1 = 0.09m
r2 = 0.09m

Then you have:
![B_T=\frac{\mu_o I}{2\pi}[(-\frac{1}{r_2}-\frac{cos45}{r_3})\hat{i}+(\frac{1}{r_1}+\frac{sin45}{r_3})\hat{j}}]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[(-\frac{1}{0.09m}-\frac{cos45}{0.127m})\hat{i}+(\frac{1}{0.09m}+\frac{sin45}{0.127m})]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[-16.67\hat{i}+16.67\hat{j}]\\\\B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D%5Cfrac%7B%5Cmu_o%20I%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7Br_2%7D-%5Cfrac%7Bcos45%7D%7Br_3%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7Br_1%7D%2B%5Cfrac%7Bsin45%7D%7Br_3%7D%29%5Chat%7Bj%7D%7D%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7B0.09m%7D-%5Cfrac%7Bcos45%7D%7B0.127m%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7B0.09m%7D%2B%5Cfrac%7Bsin45%7D%7B0.127m%7D%29%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B-16.67%5Chat%7Bi%7D%2B16.67%5Chat%7Bj%7D%5D%5C%5C%5C%5CB_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
Answer:
I beileve its A because energy is what gives the ability to do work
Explanation: