1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
13

Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po

sible medirlas directamente pues hay mucha basura. Sin embargo,se sabe que el ángulo que está frente a la barda frontal mide 34° y otro de sus ángulos mide 64°. Se quiere calcular la medida de la barda que está enfrente del ángulo de 64°. Explica por qué no es posible resolver el problema aplicando sólo las razones trigonométricas o el teorema de Pitágoras
Mathematics
1 answer:
REY [17]3 years ago
7 0

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

You might be interested in
Point B is the midpoint of Line segment A C .
lara31 [8.8K]

Answer:

Angle ABC is bisected by BD

BC =Half AC

2 mangle DBC =mangle ABC

6 0
3 years ago
Helpp!......PLEACE.......
Arlecino [84]

Answer:

Step-by-step explanation:

4 0
2 years ago
Scores on a final exam taken by 1200 students have a bell shaped distribution with mean=72 and standard deviation=9
SVETLANKA909090 [29]

Answer:

a. 72

b. 816

c. 570

d. 30

Step-by-step explanation:

Given the graph is a bell - shaped curve. So, we understand that this is a normal distribution and that the bell - shaped curve is a symmetric curve.

Please refer the figure for a better understanding.

a. In a normal distribution, Mean = Median = Mode

Therefore, Median = Mean = 72

b. We have to know that 68% of the values are within the first standard deviation of the mean.

i.e., 68% values are between Mean $ \pm $ Standard Deviation (SD).

Scores between 63 and 81 :

Note that 72 - 9 = 63 and

72 + 9 = 81

This implies scores between 63 and 81 constitute 68% of the values, 34% each, since the curve is symmetric.

Now, Scores between 63 and 81 = $ \frac{68}{100} \times 1200 $

= 68 X 12 = 816.

That means 816 students have scored between 63 and 81.

c. We have to know that 95% of the values lie between second Standard Deviation of the mean.

i.e., 95% values are between Mean $ \pm $ 2(SD).

Note that 90 = 72 + 2(9) = 72 + 18

Also, 54 = 63 - 18.

Scores between 54 and 90 totally constitute 95% of the values. So, Scores between 72 and 90 should amount to $ \frac{95}{2} \% $ of the values.

Therefore, Scores between 72 and 90 = $ \frac{95}{2(100)} \times 1200 = \frac{95}{200} \times 1200  $

$ \implies 95 \times 12 $ = 570.

That is a total of 570 students scored between 72 and 90.

d. We have to know that 5 % of the values lie on the thirst standard Deviation of the mean.

In this case, 5 % of the values lie between below 54 and above 90.

Since, we are asked to find scores below 54. It should be 2.5% of the values.

So, Scores below 54 = $ \frac{2.5}{100} \times 1200 $

= 2.5 X 12 = 30.

That is, 30 students have scored below 54.

8 0
3 years ago
A publisher reports that 54% of their readers own a particular make of car. A marketing executive wants to test the claim that t
dalvyx [7]

Answer and explanation:

Null hypothesis: p is not 54%

Alternative hypothesis : p is equal 54%

First find standard deviation

Standard deviation is:

σ = √[ P ( 1 - P ) / n ] = √[ 0.54×0.46/220 ] =0.033

The z score is calculated p-P/σ = (0.54-0.50)/0.033 = 1.2121

Therefore we can conclude that proportions are not same and fail to reject the null hypothesis

3 0
3 years ago
The first 4 terms of a geometric sequence are 2, 6, 18, 54. Part A: Find the common ratio. Remember the common ratio is the numb
ra1l [238]

Answer:

Common ratio is 3

The three terms are 162, 486, 1458

Step-by-step explanation:

Given: The first 4 terms of a sequence are 2,6,18,54

To find:

A. the common ratio

B. the next 3 values in the geometric sequence

Solution:

Geometric sequence is a sequence in which each of the terms is obtained by multiplying the previous term by a fixed number.

A.

\frac{6}{2}=3\\\\\frac{18}{6}=3\\\\\frac{54}{18}=3

So, the common ratio is 3

B.

The next three values are as follows:

54(3)=162\\162(3)=486\\486(3)=1458

8 0
3 years ago
Other questions:
  • Circle the definition of the word survey
    11·1 answer
  • What is the numerator of the simplified difference? 2x+3/x+4 - x-7/x+4​
    6·1 answer
  • The width of a rectangle is shown below: a coordinate plane with a point a at negative 3, 3 and c at negative 3, negative 4. if
    15·1 answer
  • PLEASE HELP!! will give brainliest
    12·1 answer
  • What is the estimated current value of the team (if sold now) for owners of the Mets?
    5·1 answer
  • PLEASE I NEED HELP AND EXPLAIN PLZ ​
    11·1 answer
  • Increase or decrease 32 pages to 28 Pages round to the nearest tenth of a percent
    6·1 answer
  • Draw 2 line segments, each 4 cm in length, intersecting at their midpoints. Connect each endpoint to each adjacent endpoint to f
    11·1 answer
  • For two days, your boss decides to double the amount you make if on day 1, you make $70 dollars and on day 2, you make$80 dollar
    7·1 answer
  • Plz Help me answer this question
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!