1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
2 years ago
13

Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po

sible medirlas directamente pues hay mucha basura. Sin embargo,se sabe que el ángulo que está frente a la barda frontal mide 34° y otro de sus ángulos mide 64°. Se quiere calcular la medida de la barda que está enfrente del ángulo de 64°. Explica por qué no es posible resolver el problema aplicando sólo las razones trigonométricas o el teorema de Pitágoras
Mathematics
1 answer:
REY [17]2 years ago
7 0

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

You might be interested in
Um can someone help me find x
Marysya12 [62]
8x???? I could be wrong

Explained
5 0
3 years ago
A cabinetmaker buys 3.5 liters of oak varnish. The varnish costs $4.95 per liter. How much does 3 liters of varnish cost?
uysha [10]

Answer:

I believe the answer is $14.85

Step-by-step explanation:

This is because 3x4.95 is 14.85.

8 0
3 years ago
Read 2 more answers
TDaP is a booster shot that prevents Diphtheria, Tetanus, and Pertussis in adults and adolescents. It should be administered eve
tiny-mole [99]

Answer:

Yes. There is enough evidence to support the claim that the proportion of individuals who caught pertussis and were not up to date on their booster shot is higher than those that were.

P-value = 0.00013.

Step-by-step explanation:

This is a hypothesis test for the difference between proportions.

The claim is that the proportion of individuals who caught pertussis and were not up to date on their booster shot is higher than those that were.

Then, the null and alternative hypothesis are:

H_0: \pi_1-\pi_2=0\\\\H_a:\pi_1-\pi_2> 0

The significance level is 0.05.

The sample 1 (Group 1), of size n1=145 has a proportion of p1=0.124.

p_1=X_1/n_1=18/145=0.124

The sample 2 (Group 2), of size n2=355 has a proportion of p2=0.037.

p_2=X_2/n_2=13/355=0.037

The difference between proportions is (p1-p2)=0.088.

p_d=p_1-p_2=0.124-0.037=0.088

The pooled proportion, needed to calculate the standard error, is:

p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{18+13.135}{145+355}=\dfrac{31}{500}=0.062

The estimated standard error of the difference between means is computed using the formula:

s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.062*0.938}{145}+\dfrac{0.062*0.938}{355}}\\\\\\s_{p1-p2}=\sqrt{0+0}=\sqrt{0.001}=0.024

Then, we can calculate the z-statistic as:

z=\dfrac{p_d-(\pi_1-\pi_2)}{s_{p1-p2}}=\dfrac{0.088-0}{0.024}=\dfrac{0.088}{0.024}=3.68

This test is a right-tailed test, so the P-value for this test is calculated as (using a z-table):

\text{P-value}=P(z>3.68)=0.00013

As the P-value (0.00013) is smaller than the significance level (0.05), the effect is significant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the proportion of individuals who caught pertussis and were not up to date on their booster shot is higher than those that were.

8 0
3 years ago
The fastest a human has ever run is 27 miles per hour. How many miles per minute did the human run?
nekit [7.7K]
\frac{27mi}{1hr} * \frac{1hr}{60min}= \frac{27mi}{60min}

27mi/60min=9/20
9mi/20min=xmi/1min
Cross multiply
Divide by 20 on both sides
<span>x=  9/20 


</span>
3 0
3 years ago
Read 2 more answers
Draw or write to show that the number 18 is even
AveGali [126]

Even numbers are always divisible by 2. 18 is divisible by 2, and is thus an even number.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Ben and Josh went to the roof of their 40-foot tall high school to throw their math books offthe edge.The initial velocity of Be
    10·1 answer
  • A random draw is being designed for 210 participants. A single winner is to be chosen, and all the participants must have an equ
    5·2 answers
  • All of the following are equivalent to 2(2a + b) + 8, except _____.
    13·2 answers
  • A scientist is studying the population growth rates of two different species of rats in the same laboratory conditions. The popu
    15·1 answer
  • Which is greater 5/7 or 10/12
    9·1 answer
  • The Eatery Restaurant has 200 tables. On a recent evening, there were reservations for 1/10 of the tables. How many tables were
    7·1 answer
  • Math I need help I'm trying to pass 6th<br><img src="https://tex.z-dn.net/?f=-6%20%2B%20%28-1%29%20%2B%20%28-4%29%20%3D" id="Tex
    8·1 answer
  • An interpretation of data is?
    10·2 answers
  • (PLEASE HELP) (NO SPAM) Complete the special right tringale:
    6·1 answer
  • A spinner is divided into five colored sections that are not of equal size: red, blue,
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!