1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
4 years ago
6

According to the distributive property, 6 (a + b) =

Mathematics
1 answer:
aliya0001 [1]4 years ago
7 0
6(a+b)= 6a+6b.............
You might be interested in
A certain forest covers an area of 2300 km2. Suppose that each year this area decreases by 5.25%. What will the area be after 13
nordsb [41]

Answer:

The area after 13 years will be 1141 km2

Step-by-step explanation:

This problem can be modeled with an exponencial equation:

A = Ao * (1+r)^t

Where A is the Area after t years, Ao is the inicial area and r is the rate that the area changes.

For our problem, we have that Ao = 2300, r = -5,25% = -0.0525 and t = 13.

Then, we can find the area after 13 years:

A = 2300 * (1 - 0.0525)^13

A = 2300 * (0.9475)^13 = 1140.93 km2

Rounding to the nearest square kilometer, we have A = 1141 km2

8 0
4 years ago
Help! Giving brainliest and 10+ points, A ball is dropped from the top of a 400-ft tall tower. The relationship between the time
Ad libitum [116K]

Answer:

3

Step-by-step explanation:

4 0
3 years ago
Jack took a test and got 13 out of 17 points. He took a make-up test and got 12 out of 15 points.
andrezito [222]
The answer is choice A, a 3.5% increase.
12/15 = 80%
13/17 = 76.47%

80% - 76.47% = 3.5%
6 0
3 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
A football field is 100 yards from end to end. What is the length of a football field in feet?
Mumz [18]

Answer:

300 ft

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Can someone help me
    15·1 answer
  • What are two ratios that are equivalent to 3:11
    9·2 answers
  • A refrigerator contains 11 drinks:5 leamon drinks, 3 apple drinks and 3 orange drinks Abby is first in line for drinks Telly is
    5·1 answer
  • Why does the unit of time enter twice in the unit of acceleration?
    8·2 answers
  • A diver is 35 ft below sea level. After he swims up 20ft what is his new position?​
    12·2 answers
  • I need help with this iready question​
    15·1 answer
  • A swimming pool has to be drained for maintenance. The pool is shaped like a cylinder with a diameter of 10m and a depth of 1.4
    8·1 answer
  • Florida's coastline is 118 miles shorter than four times the coastline of Texas. It is also 983 miles longer than the coastline
    9·1 answer
  • What is 11 divided by 5
    5·2 answers
  • Determine the equation of the line.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!