Answer:
A
Step-by-step explanation:
x2 = -98
x =+-√-98
x = +-√49 • 2 • -1
x = +-7√2 • -1
x = +-7i√2
(Note: i = √-1 and i^2 = -1, so you can interchange the values)
Answer:
y=2e^(−x)cosx−e^(−x)sinx
Satisfies the equation
Step-by-step explanation:
Answer:
y=2e^(−x)cosx−e^(−x)sinx
y = e^(-x)[2cosx - sinx]
Find y' and y" using product law
y' = -e^(-x)[2cosx - sinx] + e^(-x)[-2sinx - cosx]
y' = -e^(-x)[2cosx - sinx + 2sinx + cosx]
y' = -e^(-x)[3cosx + sinx]
y" = e^(-x)[3cosx + sinx] - e^(-x)[-3sinx + cosx]
y" = e^(-x)[3cosx - cosx + sinx + 3sinx]
y" = e^(-x)[2cosx + 4sinx]
y" + 2y' + 2y
e^(-x)[2cosx + 4sinx] - 2e^(-x)[3cosx + sinx] +2e^(-x)[2cosx - sinx]
e^(-x)[4sinx - 2sinx - 2sinx + 2cosx - 6 cosx + 4cosx]
= e^(-x) × 0
= 0
Answer:
22320
Step-by-step explanation:
simple interest= p (deposit) × r (rate) × t (time)
=1550×7.2×2
=22320
The answer to this is A.24
I got y=2/5x+31/5 as the answer