1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
3 years ago
7

Pls help due in 15 mins!!

Mathematics
2 answers:
WITCHER [35]3 years ago
8 0

Answer:

to late

Step-by-step explanation:

ella [17]3 years ago
7 0

your first constant of propotionality is 10

The  second constant of propotionality 5

You might be interested in
What is the value of x?<br><br> A. 112<br> B. 68<br> C. 62<br> D. 56
ollegr [7]

Answer:

B 68

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Please tell i really need the answer:
Ghella [55]

Answer:

26m

Step-by-step explanation:

8m x 2 = 16

5m x 2 = 10

16m + 10m = 26m of wires

4 0
3 years ago
The vertices of △JKL are J(−1, 8), K(3, 5), and L(6, −9). What are the vertices of T&lt;4, −2&gt;(JKL)?
mestny [16]
J'=(3, 6); K'=(7, 3); L'=(10, -11)

This is a translation vector that shifts the figure 4 right and 2 down.  We add 4 to each x-coordinate and subtract 2 from each y-coordinate.
J'=(-1+4, 8-2) = (3, 6)
K'=(3+4, 5-2) = (7, 3)
L'=(6+4,-9-2) = (10,-11)
5 0
4 years ago
A tank contains 1080 L of pure water. Solution that contains 0.07 kg of sugar per liter enters the tank at the rate 7 L/min, and
allsm [11]

(a) Let A(t) denote the amount of sugar in the tank at time t. The tank starts with only pure water, so \boxed{A(0)=0}.

(b) Sugar flows in at a rate of

(0.07 kg/L) * (7 L/min) = 0.49 kg/min = 49/100 kg/min

and flows out at a rate of

(<em>A(t)</em>/1080 kg/L) * (7 L/min) = 7<em>A(t)</em>/1080 kg/min

so that the net rate of change of A(t) is governed by the ODE,

\dfrac{\mathrm dA(t)}[\mathrm dt}=\dfrac{49}{100}-\dfrac{7A(t)}{1080}

or

A'(t)+\dfrac7{1080}A(t)=\dfrac{49}{100}

Multiply both sides by the integrating factor e^{7t/1080} to condense the left side into the derivative of a product:

e^{\frac{7t}{1080}}A'(t)+\dfrac7{1080}e^{\frac{7t}{1080}}A(t)=\dfrac{49}{100}e^{\frac{7t}{1080}}

\left(e^{\frac{7t}{1080}}A(t)\right)'=\dfrac{49}{100}e^{\frac{7t}{1080}}

Integrate both sides:

e^{\frac{7t}{1080}}A(t)=\displaystyle\frac{49}{100}\int e^{\frac{7t}{1080}}\,\mathrm dt

e^{\frac{7t}{1080}}A(t)=\dfrac{378}5e^{\frac{7t}{1080}}+C

Solve for A(t):

A(t)=\dfrac{378}5+Ce^{-\frac{7t}{1080}}

Given that A(0)=0, we find

0=\dfrac{378}5+C\implies C=-\dfrac{378}5

so that the amount of sugar at any time t is

\boxed{A(t)=\dfrac{378}5\left(1-e^{-\frac{7t}{1080}}\right)}

(c) As t\to\infty, the exponential term converges to 0 and we're left with

\displaystyle\lim_{t\to\infty}A(t)=\frac{378}5

or 75.6 kg of sugar.

7 0
3 years ago
1/6(x + 6) = 11 What is x
frozen [14]

Answer:

x = 60

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Can anyone help me please
    11·1 answer
  • A large washer has an outer radius of 10mm and a hole with a diameter of 14mm. What is the area of the top surface of the washer
    7·2 answers
  • Travis, Jessica, and Robin are collecting donations for the school band. Travis wants to collect 20% more than Jessica, and Robi
    10·1 answer
  • The difference between a number squared, and that same number is 30. What is the number
    9·1 answer
  • Write the equation of the line parallel to y – 5 = 2(x – 2), passing through the point<br> (–3, –5).
    12·1 answer
  • NEED HELP ASAP !!!! SOMEONE HELP ME
    12·2 answers
  • What is the answer of 2.87 divided by 0.1
    8·1 answer
  • 8. Sergei is buying tomatoes and finds that two different kinds are weighed in grams and
    6·1 answer
  • What is the equation of a horizontal line that passes through the point<br> (7, 11)
    8·2 answers
  • A garden shop manager tracks the inventory of seed packets in the store for a month based on
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!