<em>HERE'S</em><em> </em><em>YOUR</em><em> </em><em>ANSWER</em><em>: </em>
•Since the log is stationary and you are moving beside the log, it seems to move in the opposite direction from your point of view, because from your perspective u are stationary and the log is moving. If you were to stop moving the log would also stop moving.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPS</em><em>.</em><em>.</em><em>.</em>
Answer:
Time is 14.8 s and cannot landing
Explanation:
This is a kinematic exercise with constant acceleration, we assume that the acceleration of the jet to take off and landing are the same
Calculate the time to stop, where it has zero speed
Vf² = Vo² + a t
t = - Vo² / a
t = - 110²/(-7.42)
t = 14.8 s
This is the time it takes to stop the jet
Let's analyze the case of the landing at the small airport, let's look for the distance traveled to land, where the speed is zero
Vf² = Vo² + 2 to X
X = -Vo² / 2 a
X = -110² / 2 (-7.42)
X = 815.4 m
Since this distance is greater than the length of the runway, the jet cannot stop
Let's calculate the speed you should have to stop on a track of this size
Vo² = 2 a X
Vo = √ (2 7.42 800)
Vo = 109 m / s
It is conclusion the jet must lose some speed to land on this track
Because they perform different functions
To solve this problem we will apply the concepts related to the kinematic equations of linear motion. For such an effect we will define the average speed, as the distance traveled in the established time.
Our values are given under the following conditions:



The final distance covered in those 10 seconds at
would be


Therefore the average speed would be the sum of those distances in the total travel time


Therefore the average velocity is 30.5m/s