The corner is 60°, and based on the information given it is D...but if you can measure the angle, it would be B... A and C assume different sizes.
Answer:1. Is right 3 down 5, because to get from x(0,0) to x'(3,-5), you need I shift to the right 3 and downwards 5.
2. Counterclockwise 180 degrees. This is because 180 degrees is half of a full rotation (360 degrees), meaning the point would be the same no matter which way you rotated 180 degrees.
3. Clockwise 90 degrees. Going counter clock wise 270 degrees is like going around 3/4 of a circle (because 270/360 is 3/4). Just as well, going clock wise 90 degrees is like going 1/4 of the circle, but in the opposite direction. This means they will both land at the same point.
Hope this Helps!
Step-by-step explanation:
Answer:
482 km
63.94 degrees
Step-by-step explanation:
to solve this question we will use the cosine rule. For starters, draw your diagram. From point A, up north is 500km and 060 from there, another 300. If you join the point from the road junction back to the starting point, yoou have a triangle.
Cosine rule states that
C = 
where both A and B are the given distances, 500 and 300 respectively, C is the 3rd distance we're looking for and c is the given angle, 060
solving now, we have
C = 
C = ![\sqrt{250000 + 90000 - [215000 cos(60) }]](https://tex.z-dn.net/?f=%5Csqrt%7B250000%20%2B%2090000%20-%20%5B215000%20%20%20cos%2860%29%20%20%7D%5D)
C = ![\sqrt{340000 - [215000 * 0.5 }]](https://tex.z-dn.net/?f=%5Csqrt%7B340000%20-%20%5B215000%20%2A%200.5%20%20%7D%5D)
C = ![\sqrt{340000 - [107500 }]](https://tex.z-dn.net/?f=%5Csqrt%7B340000%20-%20%5B107500%20%20%7D%5D)
C =
C = 482 km
The bearing can be gotten by using the Sine Rule.
= 
sina/500 = sin60/482
482 sina = 500 sin60
sina = 
sina = 0.8983
a = sin^-1(0.8983)
a = 63.94 degrees
Answer: the rate at which the distance between the boats is increasing is 68 mph
Step-by-step explanation:
The direction of movement of both boats forms a right angle triangle. The distance travelled due south and due east by both boats represents the legs of the triangle. Their distance apart after t hours represents the hypotenuse of the right angle triangle.
Let x represent the length the shorter leg(south) of the right angle triangle.
Let y represent the length the longer leg(east) of the right angle triangle.
Let z represent the hypotenuse.
Applying Pythagoras theorem
Hypotenuse² = opposite side² + adjacent side²
Therefore
z² = x² + y²
To determine the rate at which the distances are changing, we would differentiate with respect to t. It becomes
2zdz/dt = 2xdx/dt + 2ydy/dt- - - -- - -1
One travels south at 32 mi/h and the other travels east at 60 mi/h. It means that
dx/dt = 32
dy/dt = 60
Distance = speed × time
Since t = 0.5 hour, then
x = 32 × 0.5 = 16 miles
y = 60 × 0.5 = 30 miles
z² = 16² + 30² = 256 + 900
z = √1156
z = 34 miles
Substituting these values into equation 1, it becomes
2 × 34 × dz/dt = (2 × 16 × 32) + 2 × 30 × 60
68dz/dt = 1024 + 3600
68dz/dt = 4624
dz/dt = 4624/68
dz/dt = 68 mph