Answer:
The answer is C. Train
Step-by-step explanation:
You have 11 items and you need to choose 5 of the 11.
There are 462 ways to choose them.
The formula is :
11! / (5!6!)
n!/(r!(n-r)!)
Answer:
i think 0 slop. wait for the other person to answers this, to be sure of the answer
Step-by-step explanation:
Answer:
a. A(x) = (1/2)x(9 -x^2)
b. x > 0 . . . or . . . 0 < x < 3 (see below)
c. A(2) = 5
d. x = √3; A(√3) = 3√3
Step-by-step explanation:
a. The area is computed in the usual way, as half the product of the base and height of the triangle. Here, the base is x, and the height is y, so the area is ...
A(x) = (1/2)(x)(y)
A(x) = (1/2)(x)(9-x^2)
__
b. The problem statement defines two of the triangle vertices only for x > 0. However, we note that for x > 3, the y-coordinate of one of the vertices is negative. Straightforward application of the area formula in Part A will result in negative areas for x > 3, so a reasonable domain might be (0, 3).
On the other hand, the geometrical concept of a line segment and of a triangle does not admit negative line lengths. Hence the area for a triangle with its vertex below the x-axis (green in the figure) will also be considered to be positive. In that event, the domain of A(x) = (1/2)(x)|9 -x^2| will be (0, ∞).
__
c. A(2) = (1/2)(2)(9 -2^2) = 5
The area is 5 when x=2.
__
d. On the interval (0, 3), the value of x that maximizes area is x=√3. If we consider the domain to be all positive real numbers, then there is no maximum area (blue dashed curve on the graph).
Answer:
Okay done
Step-by-step explanation: