Answer:
Step-by-step explanation:
The given piecewise function i
From the given function it is clear that function is divided at x=-1 and x=2. It means we check the discontinuity at x=-1 and x=2.
For x=-1,
LHL:
Since LHL ≠ f(-1), therefore the given function is discontinuous at x=-1.
For x=2,
LHL:
Since LHL ≠ f(2), therefore the given function is discontinuous at x=2.
Therefore, the correct option is A.
(A)
P(<em>X</em> < 61.25) = P((<em>X</em> - 55.4)/4.1 < (61.25 - 55.4)/4.1)
… ≈ P(<em>Z</em> ≤ 0.1427)
… ≈ 0.5567
(B)
P(<em>X</em> > 46.5) = P((<em>X</em> - 55.4)/4.1 > (46.5 - 55.4)/4.1)
… ≈ P(<em>Z</em> > -2.1707)
… ≈ 1 - P(<em>Z</em> ≤ -2.1707)
… ≈ 0.9850
3x1000+2x100+4x10+6x1+7x(1/10)+8x(1/100)
Answer:
Mean age: 48
Standard deviation: 4
Step-by-step explanation:
a) Mean
The formula for Mean = Sum of terms/ Number of terms
Number of terms
= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10
= 480/10
= 48
The mean age is 48
b) Standard deviation
The formula for Standard deviation =
√(x - Mean)²/n
Where n = number of terms
Standard deviation =
√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]
= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10
=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10
=√160/10
= √16
= 4
The standard deviation of the ages is 4
Answer:
5. 3/10
6. 7/12
7. 7/8
8. 4/3
Step-by-step explanation: Hope this helps!