0.14921894<span>3 or 3.3507811
Hope this helps!!
</span>
Answer: 30 m ; (or, write as: "30 meters") .
______________________________________________
Explanation:
____________________
Area of a trapezoid, "A" = (1/2) ( b₁ + b₂) h ;
______________________________________________
or, write as: A = ( b₁ + b₂) h / 2 ;
___________________________________
in which: A = area;
b₁ = length of "base 1" (choose either one of the 2 (two bases);
b₂ = length of "base 2" (use the base that is remaining);
h = height of trapezoid;
____________________________________________
From the information given:
___________________________
A = 100 m² ;
h = 5 m
b₁ = 10 m
b₂ = x
___________________________
Find "x", which is: "b₂" ;
__________________________
A = ( b₁ + b₂) h / 2 ;
_____________________________
Plug in our known values; and plug in "x" for "b₂" ; and solve for "x" ;
_________________________________________________________
100 m² = [(10m + x) (5m)] / 2 ; Solve for "x" ;
_________________________________________________________
(10m + x) (5m) = (2)* (100m²) ;
_________________________________________________________
(5m) (10m + x) = 200 m² ;
___________________________________________
Note: The distributive property of multiplication:
____________________________________________
a(b+c) = ab + ac ;
a(b−c) = ab <span>− ac ;
</span>____________________________________________
We have: (5m) (10m + x) = 200 m² ;
____________________________________________
So: (5m) (10m + x) = (5m*10m) + (5m * x) ;
= 50m² + (5m)x ;
_______________________________________________
→ 50m² + (5m)x = 200m² ;
_______________________________________________
Divide the ENTIRE equation by "5m" ;
_______________________________________________
→ { 50m² + (5m)x } / 5m = (200m² / 5m) ;
_______________________________________________
→ 10m + x = 40m ;
________________________________________________
Now, subtract "10m" from EACH side of the equation; to isolate "x" on one side of the equation; and to solve for "x" ;
_______________________________________
→ 10m + x − 10m = 40m − 10m ;
to get:
→ x = 30 m ; which is our answer.
___________________________________________________
Answer: 30 m ; (or, write as: "30 meters") .
_____________________________________________________
That would be -0.041
-0.125/3 = -0.041666666
Yooo finally someone that plays
Answer:
Average rate of change for the function for the interval (6, 12] is 500 people per year.
Option A is correct.
Step-by-step explanation:
We need to find the average rate of change for the function for the interval
(6, 12]
The formula used to calculate Average rate of change is:
We are given a=6 and b=12
Looking at the graph we can see that when x=6 y= 3000 so, f(a)=3000
and when x=12, y=6000 so, f(b)=6000
Putting values in formula and finding Average rate of change:
So, average rate of change for the function for the interval (6, 12] is 500 people per year.
Option A is correct.