1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
15

Find the general solution of yʹ − 3y = 8e3t + 4sin t .

Mathematics
2 answers:
Arada [10]3 years ago
8 0

Answer:

ye^{-3t} = 8t - \frac{2e^{-3t}}{5}(3sin t + cost)+C'

Step-by-step explanation:

Given differential equation,

y' - 3y = 8e^{3t} + 4sin t

\frac{dy}{dt}-3y = 8e^{3t} + 4sin t

Since, the above equation is of the type of linear differential equation

\frac{dy}{dx}+Py=Q,

In which P = -3, Q = 8e^{3t} + 4sin t,

Thus, the integrating factor,

I.F. = e^{\int (-3) dt}=e^{-3t}

Hence, the solution of the given differential equation would be,

y\times I.F. = \int I.F.\times Q dt

\implies y\times e^{-3t}=\int e^{-3t}\times (8e^{3t} + 4sin t)=\int 8+4e^{-3t} sin tdt

y\times e^{-3t} = \int 8 dt + 4\int e^{-3t} sin tdt

\implies y\times e^{-3t} = 8t + 4\int e^{-3t} sin tdt------(1)

Let,

I=\int e^{-3t} sin tdt-----(2)

Integrating by parts,  ( First term = sin t, second term = e^{-3t} )

I=-\frac{e^{-3t} sint}{3} - \int -\frac{e^{3t} cost}{3} dt+C

I=-\frac{e^{-3t} sint}{3} - [\frac{e^{-3t} cost }{9}-\int -\frac{e^{-3t} sint}{9}dt]+C

I=-\frac{e^{-3t} sint}{3} - [\frac{e^{-3t} cost }{9}+\frac{1}{9}\int e^{-3t} sint dt]+C

I=-\frac{e^{-3t} sint}{3} - [\frac{e^{-3t} cost }{9}+\frac{1}{9} I]+C ( from equation (2))

I+\frac{I}{9}=-\frac{e^{-3t} sint}{3} - \frac{e^{-3t} cost }{9}+C

\frac{10}{9}I=\frac{-3e^{-3t} sint-e^{-3t} cost }{9}+C

I=\frac{1}{10}(-3e^{-3t} sint-e^{-3t} cost)+C' ( where, C' = 9C/10 )

I=-\frac{e^{-3t}}{10}(3sin t + cost)+C'

From equation (1),

y\times e^{-3t} = 8t - \frac{4e^{-3t}}{10}(3sin t + cost)+C'

ye^{-3t} = 8t - \frac{2e^{-3t}}{5}(3sin t + cost)+C'

Blizzard [7]3 years ago
6 0

Answer:

y =C_1e^{3t} +  Ate^{3t}+ Bsint + Ccost

Step-by-step explanation:

{y}^{'} - 3y = 8e^{3t} + 4 sin t

\frac{\mathrm{d} y}{\mathrm{d} t} - 3y = 8e^{3t}+4sint

writing characteristic equation;

( m - 3 ) y = 0

m = 3

y = C_1e^{3t}

for particular solution

y_p = Ate^{3t}+ Bsint + Ccost

hence general solution becomes

y = C.F + P.I

y =C_1e^{3t} +  Ate^{3t}+ Bsint + Ccost

You might be interested in
A polling company reported that 5353​% of 10181018 surveyed adults said that rising gas prices arerising gas prices are "quite a
Sophie [7]

Answer: 540

Step-by-step explanation:

Given: A polling company reported that 53​% of 1018 surveyed adults said that rising gas prices are "quite annoying."

To find: The exact value of 53​% of 1018.

53\%\text{  of }1018 = \dfrac{53}{100}\times1018  [we divide a percentage by 100 to convert it into a fraction of decimal]

=\dfrac{53954}{100}=539.54\\\\\approx540

Hence, the 540  adults said that rising gas prices are "quite annoying."

Thus, the exact value = 540

8 0
3 years ago
At the sixth grade school dance there are 132 boys,89 girls,and 14 adults
hjlf
What is the question?
8 0
3 years ago
Read 2 more answers
Karrem says that the ratio 4:1 is eqivilent to the ratio of 12:9 because 4+8=12 and 1+8 =9 is karreem correct
Mariana [72]

Answer:

No, Kareem is incorrect.

Step-by-step explanation:

Kareem says that the ratio of \frac{4}{1}=\frac{12}{9} because 4 + 8 = 12 and 1 + 8 = 9

But the correct way to rewrite the ratio 4 : 1 is,

\frac{4}{1}=\frac{4\times 3}{1\times 3}

Which becomes as,

\frac{4}{1}=\frac{12}{3}

Therefore, Kareem is not correct.

Correct ratio equivalent to 4 : 1 is 12 : 3.

8 0
3 years ago
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
3 years ago
Probability of getting same number when rolling two dice
Soloha48 [4]
<span>6 of them are double 1,1 2,2 3,3 4,4 5,5 6,6
P(doubles)=6/36=1/6</span>
5 0
3 years ago
Other questions:
  • A large aquarium has one tank holds 41,253 gallons of water and another tank that holds 62,965 gallons of water . How many total
    15·2 answers
  • Sonya and Jade are traveling from Barcelona to Madrid. They are deciding between 3 different types of transportation (bus, train
    8·1 answer
  • A can of mixed nuts contains 46 pecans and 52 other nuts. What is the probability that a randomly selected nut will be a pecan?
    7·1 answer
  • Evaluating Quadratic Functions Using a Graph
    10·2 answers
  • A cube-shaped item needs to be painted. The item’s edge length is 2 cm. What is the total surface area that will be painted?
    11·2 answers
  • Pls help fast<br><br> simply the complex fraction
    8·2 answers
  • Solve for x. -- 2x + 6 = 30 - 6x -6 6 -8 8​
    15·2 answers
  • if you ad 4/55 +7/30 what should you get then take what you got and multiply it by 2 then whats the answer please hep i really n
    11·1 answer
  • If , what is the truncation error for S4?
    7·2 answers
  • Find the sum of all the integers from 1 to 100 inclusive that are not<br> Multiples of 7.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!