The derivative of the function g(x) as given in the task content by virtue of the Fundamental theorem of calculus is; g'(x) = √2 ln(t) dt = 1.
<h3>What is the derivative of the function g(x) by virtue of the Fundamental theorem of calculus as given in the task content?</h3>
g(x) = Integral; √2 ln(t) dt (with the upper and lower limits e^x and 1 respectively).
Since, it follows from the Fundamental theorem of calculus that given an integral where;
Now, g(x) = Integral f(t) dt with limits a and x, it follows that the differential of g(x);
g'(x) = f(x).
Consequently, the function g'(x) which is to be evaluated in this scenario can be determined as:
g'(x) =
= 1
The derivative of the function g(x) as given in the task content by virtue of the Fundamental theorem of calculus is; g'(x) = √2 ln(t) dt = 1.
Read more on fundamental theorem of calculus;
brainly.com/question/14350153
#SPJ1
Answer: 59.98
Step-by-step explanation: :)
Answer:
22.4722
Step-by-step explanation:
To answer this question we need to use the distance formula. The distance formula is as follows:

Now, let's identify what each variable is:
x2 = 13
x1 = -8
y2 = -1
y1 = 7
Next, let's put these into the equation:

Time to solve the equation:

Therefore, the distance between the points of (-8,7) and (13,1) is 22.4722.
<em>I hope this helps!!</em>
<em>- Kay :)</em>
Answer:
x = log 10/log 3
Step-by-step explanation:
3^x - 4 = 6
3^x = 10
We take log base 3 of both sides since log_3 3^x is simply x.
log_3 3^x = log_3 10
x = log_3 10
We have an answer for x, but it is a log base 3. We want log base 10.
Now we use the change of base formula.
log_b y = log y/log b
x = log 10/log 3
I don’t understand u sorry ;-;