Answer:
Here,
, hence the quadratic equation has two distinct real roots.
Step-by-step explanation:
Given quadratic equation is
.
Let, the quadratic equation is
[where,
are the constants]
The Discriminant 
Case
:
, if the discriminant is greater than
, it means the quadratic equation has two real distinct roots.
Case
:
, if the discriminant is less than
, it means the quadratic equation has no real roots.
Case
:
, if the discriminants is equal to
, it means the quadratic equation has two real identical roots.
Now,
we have
, where 
∴



Here,
, hence the quadratic equation has two distinct real roots.