1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maurinko [17]
3 years ago
15

Find the cost of lodging: What is the average lodging cost per night if a family had motel bills of $79.00, $146.00, and $104.60

for three different nights?
Mathematics
2 answers:
kumpel [21]3 years ago
6 0

Answer:

$109.86

Step-by-step explanation:


Rudiy273 years ago
4 0

Answer: 108.87


Step-by-step explanation:

To find the average

Sum of numbers÷how many numbers

(76+146+104.6) ÷ 3 numbers


You might be interested in
The sum of the first 6 terms of a geometric series is 15,624 and the common ratio is 5.
nikitadnepr [17]

Answer:

  4

Step-by-step explanation:

The sum of n terms of a geometric series with first term a1 and common ratio r is given by ...

  Sn = a1·(r^n -1)/(r -1)

for r=5 and n=6, this becomes ...

  15624 = a1·(5^6 -1)/(5 -1) = a1·(15624/4)

Then we have ...

  1 = a1/4 . . . . . divide by 15624

  4 = a1 . . . . . . multiply by 4

The first term of the series is 4.

5 0
3 years ago
Please help and provide work for help!!
Stella [2.4K]

Answer:

Step-by-step explanation:

1)

Tri. prism:

B = base = 1/2 a c

base = 1/2 * 6 * 6 = 18

volume = Bh

v = 18*4

v = 72

Rec. prism

volume = 4*6*6

v = 144

total volume = 144+72

vt = 212

2)

top rec.  = 2*3*5=30

bot rec. = 4*5*6=120

vt = 30 + 120

vt = 150

7 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
If n2 = 1/16, then n could be which of the following?<br> -8<br> -1/4<br> 1/4
andreyandreev [35.5K]

n^2=\dfrac{1}{16}\\\\n=-\dfrac{1}{4} \vee n=\dfrac{1}{4}

6 0
3 years ago
Given the angles inscribed in the circle, find m ∠ DBC.
Cloud [144]

Answer:

m∠DBC = 51°

Step-by-step explanation:

<u>Circle Theorem vocabulary</u>

  • Chord: A straight line joining two points on the circle.
  • Inscribed angle: The angle formed when two chords meet at one point on a circle.
  • Intercepted arc: The arc that is between the endpoints of the chords that form the inscribed angle.

<u>Inscribed Angle Theorem</u>

The measure of an <u>inscribed angle</u> is half the measure of the <u>intercepted arc</u>.

Therefore:

\sf \implies \angle DBC=\dfrac{1}{2}\:\overset{\frown}{BC}

\sf \implies \angle DBC=\dfrac{1}{2}\:(102^{\circ})

\sf \implies \angle DBC=51^{\circ}

Learn more about the Inscribed Angle Theorem here:

brainly.com/question/27934538

brainly.com/question/27943630

6 0
2 years ago
Read 2 more answers
Other questions:
  • A dormitory manager buys 38 bed sheets and 61 towels for $791.50. The manager get another 54 bed sheets and 50 towels for $923 f
    11·1 answer
  • What is the number in the middle of -7 and 6
    12·2 answers
  • 191 rounded to nearest ten
    6·2 answers
  • Two car washes charge a basic fee plus a fee based on the number of extras that
    10·1 answer
  • Which of the following lists the angles from smallest to largest
    14·2 answers
  • Which expression is equivalent to 9 (4x + 7)? 13.x +7 <br>13x + 16 <br>36.x + 7 <br>36x + 63​
    6·2 answers
  • 11. Which of the following points is on the
    9·1 answer
  • Please look at picture
    9·2 answers
  • A puppy ways 5 3/4 how many does the puppy way in ounces???<br><br> I NEED HELP ASAP!!
    14·2 answers
  • Match each number on the left with the correct description of the number on the right.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!