Answer:
Option A. These two lines are perpendicular
Step-by-step explanation:
we know that
If two lines are parallel, then their slopes are equal
If two lines are perpendicular, then their slopes are opposite reciprocal (the product of their slopes is equal to -1)
step 1
Convert the given equation A in slope intercept form

where
m is the slope
b is the y-intercept
we have
----> equation A
Solve for y
That means----> isolate the variable y
Divide by 3 both sides

so

step 2
Convert the given equation B in slope intercept form

where
m is the slope
b is the y-intercept
we have
----> equation B
Solve for y
That means----> isolate the variable y
subtract 3x both sides
Divide by 2 both sides

so

step 3
Compare the slopes


The slopes are opposite reciprocal (the product is equal to -1)
therefore
These two lines are perpendicular
Answer:
<h2>(90Degree)(0.3Degree/1min) = 300min</h2><h2>since 60min = 1hr</h2><h2>(300min)(1hr/60min) = 5hrs</h2>
Answer:
The absolute maximum is
and the absolute minimum value is 
Step-by-step explanation:
Differentiate of
both sides w.r.t.
,


Now take 



![\Rightarrow 1-2\sin ^2t =\sin t \quad \quad [\because \cos 2t = 1-2\sin ^2t]](https://tex.z-dn.net/?f=%5CRightarrow%201-2%5Csin%20%5E2t%20%3D%5Csin%20t%20%20%5Cquad%20%5Cquad%20%20%5B%5Cbecause%20%5Ccos%202t%20%3D%201-2%5Csin%20%5E2t%5D)






In the interval
, the answer to this problem is 
Now find the second derivative of
w.r.t.
,

![\Rightarrow \left[f''(t)\right]_{t=\frac {\pi}6}=-2\times \frac {\sqrt 3}2-4\times \frac{\sqrt 3}2=-3\sqrt 3](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cleft%5Bf%27%27%28t%29%5Cright%5D_%7Bt%3D%5Cfrac%20%7B%5Cpi%7D6%7D%3D-2%5Ctimes%20%5Cfrac%20%7B%5Csqrt%203%7D2-4%5Ctimes%20%5Cfrac%7B%5Csqrt%203%7D2%3D-3%5Csqrt%203)
Thus,
is maximum at
and minimum at 
![\left[f(t)\right]_{t=\frac {\pi}6}=2\times \frac {\sqrt 3}2+\frac{\sqrt 3}2=\frac{3\sqrt 3}2\;\text{and}\;\left[f(t)\right]_{t=\frac{\pi}2}= 2\times 0+0=0](https://tex.z-dn.net/?f=%5Cleft%5Bf%28t%29%5Cright%5D_%7Bt%3D%5Cfrac%20%7B%5Cpi%7D6%7D%3D2%5Ctimes%20%5Cfrac%20%7B%5Csqrt%203%7D2%2B%5Cfrac%7B%5Csqrt%203%7D2%3D%5Cfrac%7B3%5Csqrt%203%7D2%5C%3B%5Ctext%7Band%7D%5C%3B%5Cleft%5Bf%28t%29%5Cright%5D_%7Bt%3D%5Cfrac%7B%5Cpi%7D2%7D%3D%202%5Ctimes%200%2B0%3D0)
Hence, the absolute maximum is
and the absolute minimum value is
.