Answer:
C. ![a_3_0=-101](https://tex.z-dn.net/?f=a_3_0%3D-101)
Step-by-step explanation:
We have the arithmetic sequence 15,11,7,3,-1,...
Where,
![a_1=15,\\a_2=11,\\a_3=7,\\a_4=3,\\a_5=-1,...](https://tex.z-dn.net/?f=a_1%3D15%2C%5C%5Ca_2%3D11%2C%5C%5Ca_3%3D7%2C%5C%5Ca_4%3D3%2C%5C%5Ca_5%3D-1%2C...)
You can see that the common difference d=(-4), or if you couldn't see the common difference you can calculate it with the <em>formula:</em>
![d=a_n_+_1-a_n](https://tex.z-dn.net/?f=d%3Da_n_%2B_1-a_n)
Then,
![d=a_2-a_1\\d=11-15\\d=(-4)](https://tex.z-dn.net/?f=d%3Da_2-a_1%5C%5Cd%3D11-15%5C%5Cd%3D%28-4%29)
Now to find the 30th term of the arithmetic sequence we can use the following <em>formula:</em>
![a_n=a_1+(n-1).d](https://tex.z-dn.net/?f=a_n%3Da_1%2B%28n-1%29.d)
Replacing n=30,
and d=(-4):
![a_n=a_1+(n-1).d\\a_3_0=15+(30-1)(-4)\\a_3_0=15-29.4\\a_3_0=15-116\\a_3_0=-101](https://tex.z-dn.net/?f=a_n%3Da_1%2B%28n-1%29.d%5C%5Ca_3_0%3D15%2B%2830-1%29%28-4%29%5C%5Ca_3_0%3D15-29.4%5C%5Ca_3_0%3D15-116%5C%5Ca_3_0%3D-101)
Then the correct option is C. ![a_3_0=-101](https://tex.z-dn.net/?f=a_3_0%3D-101)