The answer to this is .15%
<h3>
Answer: 80 meters</h3>
This is an isosceles triangle. The dashed line is the height which is perpendicular to the base 120. The height is always perpendicular to the base. The dashed line cuts the base into two equal pieces (this only works for isosceles triangles when you cut at the vertex like this).
So we have two smaller triangles each with a base of 60 and a height of x. Focus on one of the right triangles and use the pythagorean theorem to solve for x.
a^2 + b^2 = c^2
x^2 + (60)^2 = (100)^2
x^2 + 3600 = 10000
x^2 = 10000 - 3600
x^2 = 6400
x = sqrt(6400)
x = 80
Each smaller right triangle has side lengths of 60, 80, 100
Note the ratio 60:80:100 reduces to 3:4:5. A 3-4-5 right triangle is a very common pythagorean primitive.
Answer:
9
Step-by-step explanation:
To find the slope of a line, calculate the distance between points with a ratio of vertical to horizontal distance. This is done using the formula:

Here the points are (-7,-2) and (-6,7). Substitute and simplify.

Answer:

Step-by-step explanation:
<u>Geometric Sequences</u>
There are two basic types of sequences: arithmetic and geometric. The arithmetic sequences can be recognized because each term is found as the previous term plus a fixed number called the common difference.
In the geometric sequences, each term is found by multiplying (or dividing) the previous term by a fixed number, called the common ratio.
We are given the sequence:
112, -28, 7, ...
It's easy to find out this is a geometric sequence because the signs of the terms are alternating. If it was an arithmetic sequence, the third term should be negative like the second term.
Let's find the common ratio by dividing each term by the previous term:

Testing with the third term:

Now we're sure it's a geometric sequence with r=-1/4, we use the general equation for the nth term:

