Answer:
145
Step-by-step explanation:
We know, that the <span>area of the surface generated by revolving the curve y about the x-axis is given by:

In this case a = 0, b = 15,

and:

So there will be:


![\left(\star\right)=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\dfrac{2\pi}{15}\cdot\dfrac{25}{6}\cdot\left[\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}\right]_0^{15}=\\\\\\= \dfrac{5\pi}{9}\left[\left(1+\dfrac{15^4}{25}\right)^\frac{3}{2}-\left(1+\dfrac{0^4}{25}\right)^\frac{3}{2}\right]=\dfrac{5\pi}{9}\left[2026^\frac{3}{2}-1^\frac{3}{2}\right]=\\\\\\= \boxed{\dfrac{5\Big(2026^\frac{3}{2}-1\Big)}{9}\pi}](https://tex.z-dn.net/?f=%5Cleft%28%5Cstar%5Cright%29%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cint%5Climits_0%5E%7B15%7Dx%5E3%5Ccdot%5Csqrt%7B1%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%7D%5C%2C%5C%2C%20dx%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cdfrac%7B25%7D%7B6%7D%5Ccdot%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D_0%5E%7B15%7D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7B15%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cleft%281%2B%5Cdfrac%7B0%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B2026%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cboxed%7B%5Cdfrac%7B5%5CBig%282026%5E%5Cfrac%7B3%7D%7B2%7D-1%5CBig%29%7D%7B9%7D%5Cpi%7D)
Answer C.
</span>
In the morning she worked 3 hours and 45 minutes. In the afternoon she worked 5 hours and 15 minutes. That is a total of 9 hours. At $16.50 per hour for 8 hours that comes to $132. Plus the 1 hour over time with breaks down to $18.50 plus $8.25 totaling $24.75. Add that to the $132 and she made a total of $156.75 for Wednesday’s work. I hope this helps with your question.
Answer:
The number of students that bring their lunches is 12
Step-by-step explanation:
Let
x -----> the number of students that bring their lunches
y -----> the total number of students in a class
we know that
The number of students that bring their lunches divided by the total number of students in a class must be equal to 3/8
-----> equation A
-----> equation B
substitute the value of y in equation A and solve for x
therefore
The number of students that bring their lunches is 12
It is a similar triangle so the side length of the smaller triangle (x and x-2) are in the same ratio as the bigger triangle (2x+5 and 2x-1). As the ratio is the same, you can equate them and solve for x.