Answer: 63
Step-by-step explanation:
X = 63
Its adjacent meaning they will add up to 180 degrees
Answer:
781250
Step-by-step explanation:
Let y is the length of the farm field
Let x is the width of the farm field
Given that, no fencing is necessary along the rock wall, so we can find the perimeter of the farm is:
2x + y = 2500 feet
<=> y = 2500 -2x
The are of the farm has the following formula:
A = x*y
<=> A = x(2500 - 2x)
<=> A = 2500x -2
To have the maximum area of field in square feet, we need to use differentials to estimate:
= 2500 - 4x
Set
= 0, we have:
2500 - 4x = 0
<=> x = 625 feet.
=> y = 2500 - 2*625 = 1250 feet
So the maximum area of field is:
A = x*y = 625*1250 = 781250
The recursive formula
can be used to generate the shown sequence
Step-by-step explanation:
Recursive formula is the formula that is used to generate the next term of a sequence using previous term.
The general form of arithmetic sequence's recursive formula is:

Given
5,-1,-7,-13,-19
Here

First of all we have to find the common difference of the sequence.
So,

Putting the value of d in the general recursive formula

Hence,
The recursive formula
can be used to generate the shown sequence
Keywords: Sequence, arithmetic sequence
Learn more about arithmetic sequence at:
#LearnwithBrainly
The equation is P= 2w + 2(w+4.1)
The width is 8.2cm
Answer:
The zeros of the function are;
x = 0 and x = 1
Step-by-step explanation:
The zeroes of the function simply imply that we find the values of x for which the corresponding value of y is 0.
We let y be 0 in the given equation;
y = x^3 - 2x^2 + x
x^3 - 2x^2 + x = 0
We factor out x since x appears in each term on the Left Hand Side;
x ( x^2 - 2x + 1) = 0
This implies that either;
x = 0 or
x^2 - 2x + 1 = 0
We can factorize the equation on the Left Hand Side by determining two numbers whose product is 1 and whose sum is -2. The two numbers by trial and error are found to be -1 and -1. We then replace the middle term by these two numbers;
x^2 -x -x +1 = 0
x(x-1) -1(x-1) = 0
(x-1)(x-1) = 0
x-1 = 0
x = 1
Therefore, the zeros of the function are;
x = 0 and x = 1
The graph of the function is as shown in the attachment below;