Answer:
36?
Step-by-step explanation:
Answer:
Interval of 50 on both axis
Step-by-step explanation:
Given





There are several ways to do this, but I will use the observation method, since the dataset is small.
Considering the x-coordinates

Each element of the data set is a multiple of 50.
Hence, an interval of 50 can be used on the x-axis
Considering the y-coordinates

Each element of the data set is a multiple of 50.
Hence, an interval of 50 can be used on the y-axis
<em>So, an interval of 50 can be used on both axes</em>
<h2>
Hello!</h2>
The answers are:

<h2>
Why?</h2>
Since we are given the margin of error and it's equal to ±0.1 feet, and we know the surveyed distance, we can calculate the maximum and minimum distance. We must remember that margin of errors usually involves and maximum and minimum margin of a measure, and it means that the real measure will not be greater or less than the values located at the margins.
We know that the surveyed distance is 1200 feet with a margin of error of ±0.1 feet, so, we can calculate the maximum and minimum distances that the reader could assume in the following way:


Have a nice day!
Answer:
b
Step-by-step explanation:
Using the z-distribution, as we are working with a proportion, it is found that the 99% confidence interval for the proportion of all U. S. Adults who would include the 9/11 attacks on their list of 10 historic events is (0.7458, 0.7942). It means that we are 99% sure that the true proportion for all U.S. adults is between these two bounds.
<h3>What is a confidence interval of proportions?</h3>
A confidence interval of proportions is given by:

In which:
is the sample proportion.
In this problem, the parameters are:

The lower limit of this interval is:

The upper limit of this interval is:

The 99% confidence interval for the proportion of all U. S. Adults who would include the 9/11 attacks on their list of 10 historic events is (0.7458, 0.7942). It means that we are 99% sure that the true proportion for all U.S. adults is between these two bounds.
More can be learned about the z-distribution at brainly.com/question/25890103