Answer:
The sample of students required to estimate the mean weekly earnings of students at one college is of size, 3458.
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for population mean (<em>μ</em>) is:

The margin of error of a (1 - <em>α</em>)% confidence interval for population mean (<em>μ</em>) is:

The information provided is:
<em>σ</em> = $60
<em>MOE</em> = $2
The critical value of <em>z</em> for 95% confidence level is:

Compute the sample size as follows:

![n=[\frac{z_{\alpha/2}\times \sigma }{MOE}]^{2}](https://tex.z-dn.net/?f=n%3D%5B%5Cfrac%7Bz_%7B%5Calpha%2F2%7D%5Ctimes%20%5Csigma%20%7D%7BMOE%7D%5D%5E%7B2%7D)
![=[\frac{1.96\times 60}{2}]^{2}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B1.96%5Ctimes%2060%7D%7B2%7D%5D%5E%7B2%7D)

Thus, the sample of students required to estimate the mean weekly earnings of students at one college is of size, 3458.
Answer:
Yes
Step-by-step explanation:
A negative multiplied by another negative will turn into a positive. A positive multipled by a negative will stay as a negative.
Answer:
Answer is 40.
Step-by-step explanation:
Answer:
Option 2: 
Step-by-step explanation:
Given:
From the triangle shown below;
A triangle QRS with angle QRS = 90°, ∠QSR = 30°.
Side QR = 5, SQ = 10 and RS = 5√3
Now, we know from trigonometric ratio that,

Here, opposite side of angle QSR is QR and Hypotenuse is the side opposite angle QRS which is SQ. Therefore,

Therefore, the value of sine of 30° is one-half. So, second option is correct.
El volumen que queda entre la esfera y el cubo es: 30.49cm^3
<h3>
¿Como calcular el volume sobrante?</h3>
El volumen sobrante será simplemente la diferencia entre el volumen del cubo y el volumen de la esfera.
Para el cubo que tiene una arista de 4cm, el volumen es:
V = (4cm)^3 = 64 cm^3
Para la esfera con un diametro de 4cm, el radio es:
R = 4cm/2 = 2cm
Y el volumen será:
V' = (4/3)*3.141592654*(2cm)^3 = 33.51 cm^3
El volumen que queda entre la esfera y el cubo es:
V - V' = 64 cm^3 - 33.51 cm^3 = 30.49cm^3
Sí quieres aprender más sobre volumenes:
brainly.com/question/1972490
#SPJ1