Answer:
The distance between first-order and second-order bright fringes is 12.66mm.
Explanation:
The physicist Thomas Young establishes through its double slit experiment a relationship between the interference (constructive or destructive) of a wave, the separation between the slits, the distance between the two slits to the screen and the wavelength.
(1)
Where
is the distance between two adjacent maxima, L is the distance of the screen from the slits,
is the wavelength and d is the separation between the slits.
The values for this particular case are:



Notice that is necessary to express L and
in units of milimeters.
⇒ 
⇒ 
Finally, equation 1 can be used:
Hence, the distance between first-order and second-order bright fringes is 12.66mm.
The anwser is c there is a light house near by
Answer:
a is 4.6 x 10-2m
b is 1x8204m
Explanation:
The fire net is actually going past zero into a negative vertical displacement. Essentially because again, we're saying that why initial equals thirty eight meters. The person is falling down to zero meters. Zero meters is where the fire that is. And then after the person stretches the fire. Yet it has a certain vertical displacement. But this particles placement is negative. So here we're going to choose the negative value. so trying to see how much of the fire net would stretch if the person was lying on tough it and if the person jumped from a height of thirty eight meters. So for here Mass is going to be equal to sixty two kilograms and why initial for party is going to be twenty meters and then why final is going to be negative one point four meters And so in order to find in order to find this is an instance, essentially, this is an instance perspective in the sense that we need this data in order to figure out this during constant so we can see that energy initial equals energy final and then we consider it mg y initial equals mg.
Answer: 0m/s²
Explanation:
Since the forces acting along the plane are frictional force(Ff) and moving force(Fm), we will take the sum of the forces along the plane
According newton's law of motion
Summation of forces along the plane = mass × acceleration
Frictional force is always acting upwards the plane since the body will always tends to slide downwards on an inclined plane and the moving acts down the plane
Ff = nR where
n is coefficient of friction = tan(theta)
R is normal reaction = Wcos(theta)
Fm = Wsin(theta)
Substituting in the formula of newton's first law we have;
Fm-Ff = ma
Wsin(theta) - nR = ma
Wsin(theta) - n(Wcos(theta)) = ma... 1
Given
W = 562N, theta = 30°, n = tan30°, m = 56.2kg
Substituting in eqn 1,
562sin30° - tan30°(562cos30°) = 56.2a
281 - 281 = 56.2a
0 = 56.2a
a = 0m/s²
This shows that the trunk is not accelerating
1.Velocity (v) is a vector quantity that measures displacement (or change in position, Δs) over the change in time (Δt), represented by the equation v = Δs/Δt. Speed (or rate, r) is a scalar quantity that measures the distance traveled (d) over the change in time (Δt), represented by the equation r = d/Δt.