Answer:
{13.7756,18.2244}
Step-by-step explanation:
Given the sample size, the margin of error can be calculated with the formula
where Z is the critical value for the desired confidence level, σ is the population standard deviation, and n is the sample size. Therefore, our margin of error for a 90% confidence level is:

The formula for a confidence interval is
where x-bar is the sample mean. Therefore, the 90% confidence interval for the mean amount of sushi pieces a person can eat is:
![CI=\bar{x}\pm[M]=16\pm2.2244={13.7756,18.2244}](https://tex.z-dn.net/?f=CI%3D%5Cbar%7Bx%7D%5Cpm%5BM%5D%3D16%5Cpm2.2244%3D%7B13.7756%2C18.2244%7D)
Therefore, we are 90% confident that the true mean amount of sushi pieces a person can eat is contained within the interval {13.7756,18.2244}
Answer:

Step-by-step explanation:

➡️ 
➡️ 
➡️ 
Factors of 15: 1, 3, 5, 15
<span>Factors of 45: 1, 3, 5, 9, </span>15, 45
<span>The Greatest common factor is 15.</span>
Answer:100
Step-by-step explanation:

- Given - <u>an </u><u>equation</u><u> </u><u>in </u><u>a </u><u>standard</u><u> </u><u>form</u>
- To do - <u>simplify</u><u> </u><u>the </u><u>equation</u><u> </u><u>so </u><u>as </u><u>to </u><u>obtain </u><u>an </u><u>easier </u><u>one</u>
<u>Since </u><u>the </u><u>equation</u><u> </u><u>provided </u><u>isn't</u><u> </u><u>i</u><u>n</u><u> </u><u>it's</u><u> </u><u>general</u><u> </u><u>form </u><u>,</u><u> </u><u>let's</u><u> </u><u>first </u><u>convert </u><u>it </u><u>~</u>
<u>General</u><u> </u><u>form </u><u>of </u><u>a </u><u>Linear</u><u> equation</u><u> </u><u>-</u>

<u>T</u><u>he </u><u>equation</u><u> </u><u>after </u><u>getting</u><u> </u><u>converted</u><u> </u><u>will </u><u>be </u><u>as </u><u>follows</u><u> </u><u>~</u>

hope helpful ~