Since they're vertical angles, they're equal in degree measure
since they're equal, we can make the two expressions equal to each other
5a - 1 = 2a + 20
add 1 to both sides
5a = 2a + 21
subtract 2a from both sides
3a = 21
divide both sides by 3a
a = 7
now, plug the answer you found for a into one of the two expressions
5a - 1 becomes (5*7) - 1, which equals 34
to double check that they're equivalent (since they're vertical angles)
2a + 20 becomes (2*7) + 20, which equals 34
both angles are 34 degrees!
Answer: 3.675 seconds
Step-by-step explanation:
Hi, when the object hits the ground, h=0:
h=−16t^2+48.6t+37.5
0=−16t^2+48.6t+37.5
We have to apply the quadratic formula:
For: ax2+ bx + c
x =[ -b ± √b²-4ac] /2a
Replacing with the values given:
a=-16 ; b=48.6; c=37.5
x =[ -(48.6) ± √(-48.6)²-4(-16)37.5] /2(-16)
x = [ -48.6 ± √ 4,761.96] /-32
x = [ -48.6 ± 69] /-32
Positive:
x = [ -48.6 + 69] /-32 = -0.6375
Negative:
x = [ -48.6 - 69] /-32 = 3.675 seconds (seconds can't be negative)
Feel free to ask for more if needed or if you did not understand something.
<span><u><em>The correct answer is:</em></u>
180</span>°<span> rotation.
<u><em>Explanation: </em></u>
<span>Comparing the points D, E and F to D', E' and F', we see that the x- and y-coordinates of each <u>have been negated</u>, but they are still <u>in the same position in the ordered pair. </u>
<u>A 90</u></span></span><u>°</u><span><span><u> rotation counterclockwise</u> will take coordinates (x, y) and map them to (-y, x), negating the y-coordinate and swapping the x- and y-coordinates.
<u> A 90</u></span></span><u>°</u><span><span><u> rotation clockwise</u> will map coordinates (x, y) to (y, -x), negating the x-coordinate and swapping the x- and y-coordinates.
Performing either of these would leave our image with a coordinate that needs negated, as well as needing to swap the coordinates back around.
This means we would have to perform <u>the same rotation again</u>; if we began with 90</span></span>°<span><span> clockwise, we would rotate 90 degrees clockwise again; if we began with 90</span></span>°<span><span> counter-clockwise, we would rotate 90 degrees counterclockwise again. Either way this rotates the figure a total of 180</span></span>°<span><span> and gives us the desired coordinates.</span></span>
Answer:
The 4th option is the correct answer
Step-by-step explanation:
Hope this helps:)