Answer:
Coulomb's law is:

First, force has units of Newtons, the charges have units of Coulombs, and r, the distance, has units of meters, then, working only with the units we have:
N = (1/{e0})*C^2/m^2
then we have:
{e0} = C^2/(m^2*N)
And we know that N = kg*m/s^2
then the dimensions of e0 are:
{e0} = C^2*s^2/(m^3)
(current square per time square over cubed distance)
And knowing that a Faraday is:
F = C^2*S^2/m^2
The units of e0 are:
{e0} = F/m.
None of them are the correct answers.
There are 171 moons, or natural satellites, orbiting the planets in our solar system; Earth, Mars, Jupiter, Saturn, Uranus, and Neptune have 1, 2, 66, 62, 27, and 13 moons, respectively. The following is a list of some of the major planetary moons, including those of the dwarf planet Pluto.
Out of them, Most of the large moons in the Solar System have prograde orbits. This means that they orbit their planet in the same direction as the planet is rotating.
Why do all the planets orbit in the same direction?
The same reason (almost) all of them rotate in the same direction: because of the conservation of angular momentum. Before a star and its planets exist, there's just a cloud of disorganized gas and small molecules. The Solar System formed from such a cloud around 4.6 billion years ago.
To learn more about Large moons here
brainly.com/question/14102358
#SPJ4
Answer:
.000828 j
Explanation:
Work = F * d
.0069 N * .12 m = .000828 j
At 1.70 atm, a gas sample occupies 4.25 liters. If the pressure in the gas increases to 2.40 atm, what will the new volume be?
Answer:
3.01L
Explanation:
Given parameters:
Initial pressure, P1 = 1.7atm
Initial volume, V1 = 4.25L
Final pressure, P2 = 2.4atm
Unknown:
Final or new volume, V2 = ?
Solution:
To solve this problem, we use Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes, if the temperature is constant".
P1 V1 = P2 V2
P1 is the initial pressure
V1 is the initial volume
P2 final pressure
V2 final volume
1.7 x 4.25 = 2.4 x V2
V2 = 3.01L