It depends on the fraction. If it is 10nth of a pie then it would be 5/10 if it is two then 1/2
Answer:
the maximum concentration of the antibiotic during the first 12 hours is 1.185
at t= 2 hours.
Step-by-step explanation:
We are given the following information:
After an antibiotic tablet is taken, the concentration of the antibiotic in the bloodstream is modeled by the function where the time t is measured in hours and C is measured in 

Thus, we are given the time interval [0,12] for t.
- We can apply the first derivative test, to know the absolute maximum value because we have a closed interval for t.
- The first derivative test focusing on a particular point. If the function switches or changes from increasing to decreasing at the point, then the function will achieve a highest value at that point.
First, we differentiate C(t) with respect to t, to get,

Equating the first derivative to zero, we get,

Solving, we get,

At t = 0

At t = 2

At t = 12

Thus, the maximum concentration of the antibiotic during the first 12 hours is 1.185
at t= 2 hours.
3 hours because all u do is subtract 5 hours and 8 hours and
Answer:
3. C=4a
Step-by-step explanation:
600/150 = 4 (one square foot = $4)