Hello!
We know that
(x - 10) * 3 = 2x
Distribute the 3
3x - 30 = 2x
Subtract 2x from both sides
x - 30 = 0
Add 30 to both sides
x = 30
The answer is 30
Hope this helps!
The answer is 3.5 + 1.5x = 12.5. So the answer would be C.
Answer:
The students should request an examination with 5 examiners.
Step-by-step explanation:
Let <em>X</em> denote the event that the student has an “on” day, and let <em>Y</em> denote the
denote the event that he passes the examination. Then,

The events (
) follows a Binomial distribution with probability of success 0.80 and the events (
) follows a Binomial distribution with probability of success 0.40.
It is provided that the student believes that he is twice as likely to have an off day as he is to have an on day. Then,

Then,

⇒

Then,

Compute the probability that the students passes if request an examination with 3 examiners as follows:

![=[\sum\limits^{3}_{x=2}{{3\choose x}(0.80)^{x}(1-0.80)^{3-x}}]\times\frac{2}{3}+[\sum\limits^{3}_{x=2}{{3\choose x}(0.40)^{3}(1-0.40)^{3-x}}]\times\frac{1}{3}](https://tex.z-dn.net/?f=%3D%5B%5Csum%5Climits%5E%7B3%7D_%7Bx%3D2%7D%7B%7B3%5Cchoose%20x%7D%280.80%29%5E%7Bx%7D%281-0.80%29%5E%7B3-x%7D%7D%5D%5Ctimes%5Cfrac%7B2%7D%7B3%7D%2B%5B%5Csum%5Climits%5E%7B3%7D_%7Bx%3D2%7D%7B%7B3%5Cchoose%20x%7D%280.40%29%5E%7B3%7D%281-0.40%29%5E%7B3-x%7D%7D%5D%5Ctimes%5Cfrac%7B1%7D%7B3%7D)

The probability that the students passes if request an examination with 3 examiners is 0.715.
Compute the probability that the students passes if request an examination with 5 examiners as follows:

![=[\sum\limits^{5}_{x=3}{{5\choose x}(0.80)^{x}(1-0.80)^{5-x}}]\times\frac{2}{3}+[\sum\limits^{5}_{x=3}{{5\choose x}(0.40)^{x}(1-0.40)^{5-x}}]\times\frac{1}{3}](https://tex.z-dn.net/?f=%3D%5B%5Csum%5Climits%5E%7B5%7D_%7Bx%3D3%7D%7B%7B5%5Cchoose%20x%7D%280.80%29%5E%7Bx%7D%281-0.80%29%5E%7B5-x%7D%7D%5D%5Ctimes%5Cfrac%7B2%7D%7B3%7D%2B%5B%5Csum%5Climits%5E%7B5%7D_%7Bx%3D3%7D%7B%7B5%5Cchoose%20x%7D%280.40%29%5E%7Bx%7D%281-0.40%29%5E%7B5-x%7D%7D%5D%5Ctimes%5Cfrac%7B1%7D%7B3%7D)

The probability that the students passes if request an examination with 5 examiners is 0.734.
As the probability of passing is more in case of 5 examiners, the students should request an examination with 5 examiners.
Can salvage 15c+ -15c is 0 + 8 is still 0
D
explanation:
7/8 x 8/3=56/24—simplify—-> 7/3