Answer:
-9x+2 · 3x
Step-by-step explanation:
You factor the polynomial out and it factors out to
The answer above.
Answer:
21 Students
Step-by-step explanation:
140 x .15 = 21
<u>Given</u>:
Given that the isosceles trapezoid JKLM.
The measure of ∠K is 118°
We need to determine the measure of each angle.
<u>Measure of ∠L:</u>
By the property of isosceles trapezoid, we have;



Thus, the measure of ∠L is 62°
<u>Measure of ∠M:</u>
By the property of isosceles trapezoid, we have;

Substituting the value, we get;

Thus, the measure of ∠M is 62°
<u>Measure of ∠J:</u>
By the property of isosceles trapezoid, we have;

Substituting the value, we get;

Thus, the measure of ∠J is 118°
Hence, the measures of each angles of the isosceles trapezoid are ∠K = 118°, ∠L = 62°, ∠M = 62° and ∠J = 118°
Given:
One linear function represented by the table.
Another linear function represented by the graph.
To find:
The greater unit rate and greater y-intercept.
Solution:
Formula for slope (unit rate):

From the given table it is clear that the linear function passes through (0,5) and (5,15). The function intersect the y-axis at (0,15), so the y-intercept is 15.



So, the unit rate of first function is 2.
From the given graph it is clear that the linear function passes through (0,6) and (-4,0). The function intersect the y-axis at (0,6), so the y-intercept is 6.



So, the unit rate of first function is
.
Now,


And,

Therefore, the greater unit rate of the two functions is 2. The greater y-intercept of the two functions is 15.