540 people can ride the wild river in 1 hour if all of the rafts are used and each raft is full
<u>Solution:</u>
Given, There are 15 rafts available for people to use on the adventure river ride.
Each raft holds 12 people.
Then, total people capacity over all rafts = 15 x 12 = 180 people.
The park runs this ride 3 times each hour.
We have to find how many people can ride the wild river in 1 hour if all of the rafts are used and each raft is full?
Then, <em>total people count who take ride = number of rides x number of people per ride
</em>
= 3 x 180 = 540
Hence, 540 people can take ride in 1 hour.
Answer:
(a)96.77%
(b)3.23%
Step-by-step explanation:
Starting with the Michaelis-Menten equation which is used to model biochemical reactions:
Dividing both sides by 
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D)
Where:
maximum rate achieved by the system
=The Michaelis constant
Substrate concentration
(a) When ![[S]=30K_M](https://tex.z-dn.net/?f=%5BS%5D%3D30K_M)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{30K_M}{K_M + 30K_M}\\\dfrac{v}{V_{max}}=\dfrac{30}{1 + 30}\\\dfrac{v}{V_{max}}=\dfrac{30}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{30}{31}X100=96.77\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30K_M%7D%7BK_M%20%2B%2030K_M%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B1%20%2B%2030%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7DX100%3D96.77%5C%25)
(b)When ![K_M=30[S]](https://tex.z-dn.net/?f=K_M%3D30%5BS%5D)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{[S]}{30[S] + [S]}\\\\=\dfrac{1[S]}{30[S] + 1[S]}\\=\dfrac{1}{30 + 1}\\\dfrac{v}{V_{max}}=\dfrac{1}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{1}{31}X100=3.23\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7B30%5BS%5D%20%2B%20%5BS%5D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%5BS%5D%7D%7B30%5BS%5D%20%2B%201%5BS%5D%7D%5C%5C%3D%5Cdfrac%7B1%7D%7B30%20%2B%201%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7DX100%3D3.23%5C%25)
Answer:she will need around 9 weeks and she will have enuogh
Step-by-step explanation:
9
Answer:
The number of students would have increased by 25%.
Step-by-step explanation:
2/5(x - 1) < 3/5(1 + x)
To find the solution, we can use the distributive property to simplify.
2/5x - 2/5 < 3/5 + 3/5x
Multiply all terms by 5.
2x - 2 < 3 + 3x
Subtract 2x from both sides.
-2 < 3 + x
Subtract 3 from both sides.
-5 < x
<h3><u>The value of x is greater than the value of -5.</u></h3>