Answer:
The answer to the question is
The specific heat capacity of the alloy = 1.77 J/(g·°C)
Explanation:
To solve this, we list out the given variables thus
Mass of alloy = 45 g
Initial temperature of the alloy = 25 °C
Final temperature of the alloy = 37 °C
Heat absorbed by the alloy = 956 J
Thus we have
ΔH = m·c·(T₂ - T₁) where ΔH = heat absorbed by the alloy = 956 J, c = specific heat capacity of the alloy and T₁ = Initial temperature of the alloy = 25 °C , T₂ = Final temperature of the alloy = 37 °C and m = mass of the alloy = 45 g
∴ 956 J = 45 × C × (37 - 25) = 540 g·°C×c or
c = 956 J/(540 g·°C) = 1.77 J/(g·°C)
The specific heat capacity of the alloy is 1.77 J/(g·°C)
ツ here your answer

- A)Potassium bromide(aq) + Barium iodide(aq) → Potassium iodide(aq) + Barium bromide(s)
- 2KBr(aq)+BaI2(aq) → 2KI(aq)+BaBr2(s)
- B)Balance the Chemical Equation for the reaction of calcium carbonate with hydrochloric acid:
- CaCO3+ HCl -> CaCl2 + CO2 + H2O To balance chemical equations we need to look at each element individually on both sides of the equation. calcium carbonate is a chemical compound with the formula CaCO3.
<em><u>M</u></em><em><u>a</u></em><em><u>r</u></em><em><u>k</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em>
Missing question: What is the rate constant for the reaction?
<span>[RS2](mol L-1) Rate (mol/(L·s))
0.150 0.0394
0.250 0.109
0.350 0.214
0.500 0.438</span>
Chemical reaction: 3RS₂ → 3R + 6S.
Compare second and fourth experiment, when concentration is doubled, rate of concentration is increaced by four. So rate is:
rate = k·[RS₂]².
k = 0,438 ÷ (0,500)².
k = 1,75 L/mol·s.
Answer: YOU MAY FIND THE ANSWER IF YOU SEARCH THE WEB.
Explanation:
Heavy rainfall because that’s a natural thing that happens and can never stop